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Lecture 1.

Thursday, October 4, 2018

2 = π = i = −1 in these lectures. –a former lecturer of Prof. Allanach’s.
To begin with, some logistic points. The notes and much of the course material will be based on David
Tong’s QFT notes plus some of Prof. Allanach’s on cross-sections and decay rates. See http://www.

damtp.cam.ac.uk/user/examples/indexP3.html and in particular http://www.damtp.cam.ac.uk/user/
examples/3P1l.pdf for the notes on cross-sections. In revising these notes, I’ll be cross-referencing the Tong
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QFT notes as well as my copy of Anthony Zee’s Quantum Field Theory in a Nutshell, which takes a different
pedagogical order in starting from the path integral formalism and introducing second quantization (the
approach described here) later. Any good education in QFT requires an understanding of both formalisms,
and we’ll see the path integral next term in Advanced Quantum Field Theory.1

After Tuesday’s lecture, we’ll be assigned one of four course tutors:
◦ Francesco Careschi, fc435@cam.ac.uk
◦ Muntazir Abidi, sma74
◦ Khim Leong, lkw30
◦ Stefano Vergari, sv408

Also, the Saturday, November 24th lecture has been moved to 1 PM Monday 26 November, still in MR2.
That’s it for logistics for now.

Definition 1.1. A quantum field theory (QFT) is a field theory with an infinite number of degrees of freedom
(d.o.f.). Recall that a field is a function defined at all points in space and time (e.g. air temperature is a
scalar field in a room wherever there’s air). The states in QFT are in general multi-particle states.

Special relativity tells us that energy can be converted into mass, and so particles are produced and
destroyed in interactions (particle number is in general not conserved). This reveals a conflict between SR
and quantum mechanics, where particle number is fixed. Interaction forces in our theory then come from
additional structure in the theory, depending on things like

◦ symmetry
◦ locality
◦ “renormalization group flow.”

Definition 1.2. A free QFT is a QFT that has particles but no interactions. The classic free theory is
a relativistic theory with which treats particles as excitations of infinitely many quantized harmonic
oscillators.

Free theories are generally not realistic but they are important, as interacting theories can be built from
these with perturbation theory. The fact we can do this means the particle interactions are somehow weak
(we say these theories have weak coupling), but other theories of interest (e.g. the strong force) have strong
coupling and cannot be described with perturbation theory.

Units in QFT In QFT, we usually set c = h̄ = 1. Since [c] = [L][T]−1 and [h̄] = [L]2[M][T]−1, we find that
in natural units,

[L] = [T] = [M]−1 = [E]−1

(where the last equality follows from E = mc2 with c = 1, for example). We often just pick one unit, e.g.
an energy scale like eV, and describe everything else in terms of powers of that unit. To convert back to
metres2 or seconds, just reinsert the relevant powers of c and h̄.

Example 1.3. The de Broglie wavelength of a particle is given by λ = h̄/(mc). An electron has mass
me ' 106 eV, so λe = 2× 10−12 m.

If a quantity x has dimension (mass)d, we write [x] = d, e.g.

G =
h̄c
M2

p
=⇒ [G] = −2.

Mp ≈ 1019 GeV corresponds to the Planck scale, λp ∼ 10−33 cm, the length/energy scales where we expect
quantum gravitational effects to become relevant. We note that the problems associated with relativising
the Schrödinger equation are fixed in QFT by particle creation and annihilation.

1Note that the path integral formulation from Statistical Field Theory, also taught this term, is precisely equivalent to the path
integral that appears in QFT under the identification of one of the Euclidean dimensions of a statistical field theory with the imaginary
time dimension of a QFT. This will be more obvious in hindsight.

2As a USAmerican, I am likely to be bewilderingly inconsistent with regards to using American versus British spellings. Please
bear with me.
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Classical field theory Before we do QFT, let’s review classical field theory. In classical particle mechanics,
we have a finite number of generalized coordinates qa(t) (where a is a label telling you which coordinate
you’re talking about), and in general they are a function of time t. But in field theory, we instead have
continuous fields φa(x, t), where a labels the field in question and x is no longer a coordinate but a label
like a.3

In our classical field theory, there are now an infinite number of degrees of freedom, at least one for each
position in space x, so position has been demoted from a dynamical variable to a mere label.

Example 1.4. The classical electromagnetic field is a vector field with components Ei(x, t), Bi(x, t) such that
i, j, k ∈ {1, 2, 3} label spatial directions. In fact, these six fields are derived from four fields (or rather four
field components), the four-potential Aµ(x, t) = (φ, A) where µ ∈ {0, 1, 2, 3}.

Then the classical fields are simply related to the four-potential by

Ei =
∂Ai
∂t
− ∂A0

∂xi
and Bi =

1
2

εijk
∂Ak
∂xj

(1.5)

with εijk the usual Levi-Civita symbol, and where we have used the Einstein summation convention
(repeated indices are summed over).

The dynamics of a field are given by a Lagrangian L, which is simply a function of φa(x, t), φ̇a(x, t), and
∇φa(x, t). This is in precise analogy to the Lagrangian of a discrete system, which is a function of the
coordinates qa(t) and their derivatives q̇a(t).

Definition 1.6. We write
L =

∫
d3xL(φa, ∂µφa), (1.7)

where we call L the Lagrangian density, or by a common abuse of terminology simply the Lagrangian.

Definition 1.8. We may then also define the action

S ≡
∫ t1

t0

Ldt =
∫

d4xL(φa, ∂µφa) (1.9)

Let us also note that in these units we take the action S to be dimensionless, [S] = 0 (since it appears
alone in an exponent, for instance, eiS), and so since [d4x] = −4 we have [L] = 4.

The dynamical principle of classical field theory is that fields evolve such that S is stationary with respect
to variations of the field that don’t affect the initial or final values (boundary conditions). That is, δS = 0. A
general variation of the fields produces a variation in the action

δS = ∑
a

∫
d4x

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ(∂µφa)

}
.

Integrating the second term by parts, we find that the variation in the action becomes

δS = ∑
a

∫
d4x

{
∂L
∂φa

δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)
− ∂µ

(
∂L

∂(∂µφa)

)
δφa

}
.

The integral of the total derivative term vanishes for any term that decays at spatial ∞ (i.e. L is reasonably
well-behaved) and has δφa(x, t1) = δφa(x, t0) = 0, as guaranteed by our boundary conditions. Therefore the
boundary term goes away and we find that stationary action, δS = 0, implies the Euler-Lagrange equations,

∂µ
∂L

∂(∂µφa)
− ∂L

∂φa
= 0. (1.10)

Example 1.11. Consider the Klein-Gordon field φ, defined as the real-valued field φ which has a Lagrangian

L =
1
2

ηµν∂µφ∂νφ− 1
2

m2φ2. (1.12)

Here ηµν is the standard Minkowski metric4.

3See for instance Anthony Zee’s QFT in a Nutshell to see a more detailed description of how we go from discrete to continuous
systems.

4We use the mostly minus convention here, but honestly the sign conventions are all arbitrary and relativity often uses the other
one where time gets the minus sign.

https://en.wikipedia.org/wiki/Levi-Civita_symbol
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To compute the Euler-Lagrange equation for this field theory, we see that

∂L
∂φ

= −m2φ and
∂L

∂(∂µφ)
= ∂µφ.

The Euler-Lagrange equations then tell us that φ obeys the equation of motion

∂µ∂µφ + m2φ = 0,

which we call the Klein-Gordon equation. It has wave-like solutions φ = e−ipx with (−p2 + m2)φ = 0 (so that
p2 = m2, which is what we expect in units where c = 1).

Non-lectured aside: on functional derivatives If you’re like me, you get a little anxious about taking
complicated functional derivatives. The easiest way to manage these is to rewrite the Lagrangian so that all
terms precisely match the form of the quantity you are taking the derivative with respect to, and remember
that matching indices produce delta functions.

Here’s a quick example. To compute ∂
∂(∂αφ)

[
∂µφ∂µφ

]
, rewrite the term in the brackets as ηµν∂µφ∂νφ

(since we are deriving with respect to a function of the form ∂αφ) and make sure to take the derivative with
respect to a new index not already in the expression, e.g. ∂αφ. Then

∂

∂(∂αφ)

[
∂µφ∂µφ

]
=

∂

∂(∂αφ)
ηµν∂µφ∂νφ

= ηµν(δα
µ)∂νφ + ηµν∂µφ(δα

ν )

= 2∂αφ,

where we have raised the index with ηµν and written the final expression in terms of α using the delta
function. The functional derivative effectively finds all appearances of the denominator exactly as written,
including indices up or down, and replaces them with delta functions so the actual indices match. This
is especially important in computing the Euler-Lagrange equations for something like Maxwell theory,
where one may have to derive by ∂µ Aν and both those indices must match exactly to their corresponding
appearances in the Lagrangian.

No one ever taught me exactly how to approach such variational problems, so I wanted to record my
strategy here for posterity. It may take a little longer than just recognizing that ∂

∂(∂µφ)
1
2 ∂νφ∂νφ = ∂µφ, but

this approach always works and it has the benefit of helping avoid careless mistakes like forgetting the
factor of 2 in the example above.

Lecture 2.

Saturday, October 6, 2018

Last time, we derived the Euler-Lagrange equations for Lagrangian densities:

∂µ
∂L

∂(∂µφa)
− ∂L

∂φa
= 0. (2.1)

Today, we’ll look at some more simple Lagrangians. We’ll introduce Noether’s theorem as it applies to
fields and also derive the energy-momentum tensor in a field theory context.

Example 2.2. Consider the Maxwell Lagrangian,

L = −1
2
(∂µ Aν)(∂

µ Aν) +
1
2
(∂µ Aµ)2. (2.3)

Plugging into the E-L equations, we find that ∂L
∂Aν

= 0 and

∂L
∂(∂µ Aν)

= ∂µ Aν + ηµν∂ρ Aρ. (2.4)

Thus E-L tells us that
0 = −∂2 Aν + ∂ν(∂ρ Aρ) = −∂µ(∂

µ Aν − ∂ν Aµ). (2.5)
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Defining the field strength tensor Fµν = ∂µ Aν − ∂ν Aµ, we can write the E-L equation for Maxwell as the
simple

0 = ∂µFµν,
which written explicitly is equivalent to Maxwell’s equations in vacuum (we’ll revisit this when we do
QED).

The Lagrangians we’ll consider here and afterwards are all local– in other words, there are no couplings
φ(x, t)φ(y, t) with x 6= y. There’s no reason a priori that our Lagrangians have to take this form, but all
physical Lagrangians seem to do so.

Lorentz invariance Consider the Lorentz transformation on a scalar field φ(x) ≡ φ(xµ). The coordinates
x transform as x′ = Λ−1x with Λµ

σηστΛν
τ = ηµν. Under Λ, our field transforms as φ → φ′ where

φ′(x) = φ(x′). Recall that Lorentz transformations generically include boosts as well as rotations in
R3. As we’ve discussed in Symmetries, Fields and Particles, Lorentz transformations form a Lie group
(O(3, 1), or specifically the proper orthochronous Lorentz group) under matrix multipication. They have a
representation given on the fields (i.e. a mapping to a set of transformations on the fields which respects
the group multiplication law).

For a scalar field, this is φ(x)→ φ(Λ−1x) (an active transformation). We could have also used a passive
transformation where we re-label spacetime points: φ(x) → φ(Λx). It doesn’t matter too much– since
Lorentz transformations form a group, if Λ is a Lorentz transformation, so is Λ−1. In addition, most of our
theories will be well-behaved and Lorentz invariant.

Definition 2.6. Lorentz invariant theories are ones where the action S is unchanged by Lorentz transformati-
ons.

Example 2.7. Consider the action given by

S =
∫

d4x
[

1
2

∂µφ∂µφ−U(φ)

]
,

where U(φ) is some potential density. U → U′(x) ≡ U(φ′(x)) = U(x′) means that U is a scalar field (check
this!) and we see that

∂µφ′ =
∂

∂xµ φ(x′) =
∂x′σ

∂xµ ∂′σφ(x′) = (Λ−1)σ
µ∂′σφ(x′)

where ∂′σ ≡ ∂
∂x′σ . Thus the kinetic term transforms as

Lkin → L′kin = ηµν∂µφ′∂νφ′ = ηµν(Λ−1)σ
µ(Λ−1)τ

ν∂′σφ(x′)∂′τφ(x′) = ηστ∂′σφ(x′)∂′τφ(x′) = Lkin(x).

Thus we see that the action overall transforms as

S→ S′ =
∫

d4xL(x′) =
∫

d4xL(Λ−1x).

Under a change of variables u ≡ Λ−1x, we see that det(Λ−1) = 1 (from group theory) so the volume
element is the same, d4y = d4x and therefore

S′ =
∫

d4yL(y) = S.

We conclude that S is invariant under Lorentz transformations.

We also remark that under a LT, a vector field Aµ transforms like ∂µφ, so

A′µ(x) = (Λ−1)σ
µ Aσ(Λ−1x).

This is enough to attempt Q1 from example sheet 1.5

Theorem 2.8. Every continuous symmetry of L gives rise to a current Jµ which is conserved, ∂µ jµ = 0. Each jµ has
a conserved charge Q =

∫
R3 j0d3x.

5Copied here for quick reference: Show directly that if φ(x) satisfies the Klein-Gordon equation, then φ(Λ−1x) also satisfies this
equation for any Lorentz transformation Λ.
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Given that the current is conserved, it’s easy to show that the charge is conserved, since dQ
dt =∫

R3 d3x∂0 j0 = −
∫
R3 d3x∇ · j = 0 by the divergence theorem, assuming |j| → 0 as |x| → ∞.

Let us define an infinitesimal variation of a field φ, φ(x)→ φ′(x) = φ(x)+ α∆φ(x) with α an infinitesimal
change. If S is invariant, we call this a symmetry of the theory.

Since S is invariant up to adding a total 4-divergence (a total derivative ∂µ) to the Lagrangian, our
symmetry doesn’t affect the Euler-Lagrange equations. L transforms as

L(x)→ L(x) + α∂µXµ(x), (2.9)

and expanding to leading order in α we have

L → L(x) + α
∂L
∂φ

∆φ + α
∂L

∂(∂µφ)
∂µ(∆φ) + O(α2). (2.10)

We can rewrite this in terms of a total derivative ∂µ

(
∂L

∂(∂µφ)
∆φ
)

so that

L′ = L(x) + α∂µ

(
∂L

∂(∂µφ)
∆φ

)
+ α

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
∆φ. (2.11)

By Euler-Lagrange, the second term in parentheses vanishes, so we identify the first term in parentheses as

none other than α∂µXµ(x) from Eqn. 2.9 (in other words, ∂µ

(
∂L

∂(∂µφ)
∆φ
)
= ∂µXµ) and recognize

jµ ≡ ∂L
∂(∂µφ)

∆φ− Xµ (2.12)

as our conserved current (such that ∂µ jµ = 0).

Example 2.13. Take a complex scalar field

ψ(x) =
1√
2
(φ1(x) + iφ2(x)).

We can then treat ψ, ψ∗ as independent variables and write a Lagrangian

L = ∂µψ∗∂µψ−V(|ψ|2).

Then we observe that under ψ→ eiβψ, ψ∗ → e−iβψ∗, the Lagrangian is invariant. The differential changes
are ∆ψ = iψ (think of expanding ψ → eiβψ to leading order) and similarly ∆ψ∗ = −iψ∗ (here we find that
Xµ = 0).

We add the currents from ψ, ψ∗ to find

jµ = i{ψ∂µψ∗ − ψ∗∂µψ}.

This is enough to do questions 2 and 3 on the example sheet.

Example 2.14. Under infinitesimal translation xµ → xµ − αεµ, we have φ(x) → φ(x) + αεµ∂µφ(x) by
Taylor expansion (similar for ∂µφ). If the Lagrangian doesn’t depend explicitly on x, then L(x) →
L(x) + αεµ∂µL(x).

Rewriting to match the form L + α∂µXµ, we see that our new Lagrangian takes the form L(x) +
αεν∂µ(δ

µ
ν L). We get one conserved current for each component of εν, so that

(jµ)ν =
∂L

∂(∂µφ)
∂νφ− δ

µ
νL

with ∂µ(jµ)ν = 0. We write this as jµν ≡ Tµ
ν, the energy-momentum tensor.

Definition 2.15. The energy-momentum tensor (sometimes stress-energy tensor) is the conserved current
corresponding to translations in time and space. It takes the form

Tµν ≡ ∂L
∂(∂µφ)

∂νφ− ηµνL,
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where we have raised an index with the Minkowski metric as is conventional. The conserved charges from
integrating

∫
d3xT0ν end up being the total energy E =

∫
d3xT00 and the three components of momentum

Pi =
∫

d3xT0i.6

Lecture 3.

Tuesday, October 9, 2018

Last time, we used Noether’s theorem to find the stress-energy tensor

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL. (3.1)

To better understand this object, we might ask: what is Tµν for free scalar field theory? Recall the Lagrangian
for this theory is

L =
1
2

∂µφ∂µφ− 1
2

m2φ2. (3.2)

Then by explicit computation, the stress-energy tensor is

Tµν = ∂µφ∂νφ− ηµνL.

The energy is given by

E =
∫

d3x
[

1
2

φ̇2 +
1
2
(∇φ)2 +

1
2

m2φ2
]

(from integrating the T00 component) and the conserved momentum components are (from T0i)

pi =
∫

d3xφ̇(∂iφ).

Note that the original Lagrangian terms don’t show up here, since ηµν is diagonal.
We’ll note that Tµν for this theory is symmetric in µ, ν, but a priori it doesn’t have to be. If Tµν is

not symmetric initially, we can massage it into a symmetric form by adding ∂ρΓρµν where Γµρν = −Γρµν

(antisymmetric in the first two indices). Then ∂µ

(
∂ρΓρµν

)
= 0, which means that adding this term will not

affect the conservation of Tµν. This is sufficient to attempt questions 1-6 of the first examples sheet.

Canonical quantization Here, we’ll follow Dirac’s lead and attempt to quantize our field theories. Recall
that the Hamiltonian formalism also accommodates field theories (as well as our garden-variety QM).

Definition 3.3. We define the conjugate momentum

π(x) ≡ ∂L
∂φ̇

where a · denotes a time derivative d/dt, and the Hamiltonian density corresponding to a Lagrangian L is
then

H ≡ π(x)φ̇(x)−L(x).
As in classical mechanics, we eliminate the time derivative φ̇ in favor of the conjugate momentum π
everywhere in H.

Example 3.4. For L = 1
2 φ̇2 − 1

2 (∇φ)2 −V(φ) (and writing in terms of π(x) = φ̇(x)) we get

H = (π)(φ̇)−
(

1
2

φ̇2 − 1
2
(∇φ)2 −V(φ)

)
=

1
2

π2 +
1
2
(∇φ)2 + V(φ).

6The definition of the energy-momentum tensor here is slightly different from the one used in general relativity. Here, we have
used time and space translations to derive Tµν, but in general relativity, we use variations of the metric gµν instead. The benefit of
the GR definition is that the resulting tensor is always symmetric, whereas the Tµν from spacetime translations is not guaranteed
to be symmetric. We’ll see an example of this in the example sheets, but the Tµν defined by spacetime translations can always be
made symmetric by defining the “Belinfante-Rosenfeld tensor.” The construction isn’t anything too special, but relativists insist that
variations of the action with respect to the metric is the correct way to define the energy-momentum tensor.
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The Hamiltonian is just the integral of the Hamiltonian density: H =
∫

d3xH. Hamilton’s equations then
yield the equations of motion:

φ̇ =
∂H
∂π

, π̇ = −∂H
∂φ

.

Working these out explicitly for the free theory will give us back the Klein-Gordon equation. Note that H
agrees with the total field energy E that we computed above.

There’s a slight complication in working in the Hamiltonian formalism– because t is special in our
equations, the theory is not manifestly Lorentz invariant (compare to the ∂µs and variations with respect to
δ∂µφ in the Lagrangian formalism). Our original theory was Lorentz invariant, so our rewritten theory is
still Lorentz invariant– it’s just not immediately obvious from how we’ve written it.

Now let’s recall that in quantum mechanics, canonical quantization takes the (classical) coordinates qa
and momenta pa and promotes them to (quantum) operators. We also replace the Poisson bracket {, } with
commutators [, ]. In QM, we had

[qa, pb] = iδb
a ,

working in units where h̄ = 1. We’ll do the same for our fields φa and the conjugate momenta πb.

Definition 3.5. A quantum field is an operator-valued function of space φa(x) obeying the commutation
relations

[φa(x), φb(y)] = 0 (3.6)
[πa(x), πb(y)] = 0 (3.7)

[φa(x), πb(y)] = iδ3(x− y)δb
a . (3.8)

The subscript a labels which field we are talking about, and the point x denotes where in space we are
looking.

It’s no coincidence that these precisely replicate the commutation relations of the operators x̂ and p̂
in ordinary quantum mechanics, except that now we have an additional label x on the fields. If you like,
quantum mechanics is just a 0 + 1-dimensional QFT– there are no spatial labels to keep track of, only
coordinates and momenta qa, pa. Note that φa(x), πb(x) don’t depend on t, since we are in the Schrödinger
picture. All the t dependence sits in the states which evolve by the usual time-dependent Schrödinger
equation

i
d
dt
|ψ〉 = H |ψ〉 .

We have an infinite number of degrees of freedom, at least one for each point x in space. For some theories
(free theories), different solutions φ can be added together and will evolve independently– free field theories
have L quadratic in φa (plus derivatives thereof), which implies linear equations of motion.

We saw that the simplest free theory leads to the classical Klein-Gordon equation for a real scalar field
φ(x, t), i.e. ∂µ∂µφ + m2φ = 0. To see explicitly why this is a free theory, take the Fourier transform of φ(x, t)
to write the equations of motion in momentum space:

φ(x, t) =
∫ d3 p

(2π)3 eip·xφ(p, t).

Then we get the equation of motion [
∂2

∂t2 + (|p|2 + m2)

]
φ(p, t) = 0.

We see that the solution is a harmonic oscillator with frequency ωp =
√

p2 + m2, so the general solution is
a superposition of simple harmonic oscillators each vibrating at different frequencies ωp. To quantize our
field φ(x, t), we have to quantize these harmonic oscillators.



3. Tuesday, October 9, 2018 9

Review of 1D harmonic oscillators Recall that the Hamiltonian for the simple harmonic oscillator is

H =
1
2

p2 +
1
2

ω2q2,

subject to the canonical commutation condition

[q, p] = i,

where p and q are the momentum and position operators as usual. It’s certainly possible to solve this
system by the series method, but the algebraic method is much more elegant by far and will generalize
better. Our approach is as follows– we’d like to factor the Hamiltonian (since if p and q were classical
quantities we could just write it as 1

2 (p + iωq)(p− iωq), for instance) but we know that this doesn’t quite
work because p and q do not commute. Therefore, we define the following operators:

◦ The creation or raising operator, a† ≡ − i√
2ω

p +
√

ω
2 q

◦ The annihilation or lowering operator, a ≡ + i√
2ω

p +
√

ω
2 q.

Note that we can equivalently solve for p and q in terms of a and a†: q = 1√
2ω

(a + a†) and p = −i
√

ω
2 (a−

a†). Substituting p and q into the quantization condition yields the commutator of a, a†,

[a, a†] = 1.

We’ll then factorize the Hamiltonian into a and a†, picking up an extra term from the commutation relation
of p and q– a little more algebra allows us to rewrite the Hamiltonian as

H =
1
2

ω(aa† + a†a) = ω

(
a†a +

1
2

)
.

Computing the commutators [H, a] and [H, a†] reveals that

[H, a†] = ωa†, [H, a] = −ωa,

which tells us that the operators a, a† take us between energy eigenstates.7 More specifically, they take us
up and down a ladder of equally spaced energy eigenstates so that if we have one eigenstate with energy E,
then we can reach a whole set of eigenstates with energy . . . E + 2ω, E + ω, E, E−ω, E− 2ω, . . ..

If we further postulate that the energy is bounded from below, this implies the existence of a ground
state |0〉 such that the lowering operator acting on |0〉 kills the state: a |0〉 = 0.8 In our original Hamiltonian,
this ground state has energy given by

H |0〉 = ω

(
a†a +

1
2

)
|0〉 = ω

2
|0〉 ,

so the ground state energy (or zero point energy) of the system is ω/2. For our quantum theory it’s really
differences in energy which matter more than their absolute values,9 so we could have just as easily written
an equivalent Hamiltonian H = ωa†a and set the ground state energy to 0.

We only need one state to construct our full ladder of energy eigenstates, and we can do so by passing
our equation back to q-space (real coordinates) and further writing p = i ∂

∂q . If we plug these back into the
Hamiltonian, having set H |0〉 = 0, we can then solve for the ground state and find that it is a Gaussian
in q with some appropriate variance and normalization. Then we simply need to apply a† repeatedly to
get all the other states, labeling them as |n〉 ≡ (a†)n |0〉 with H |n〉 = nω |n〉. (Here we’ve disregarded
normalization, but it’s easy enough to add some scaling factor in the definition of |n〉 so that 〈n| m〉 = δnm.)

7Explicitly, consider an eigenstate |E〉 with energy E. Then Ha† |E〉 = (a† H + ωa†) |E〉 = (E + ω)a† |E〉, so a† |E〉 is an eigenstate
with energy E + ω. The computation for a is similar.

8As a fun aside, the theory of angular momentum is similar, except that there for angular momentum, there is a maximum
eigenvalue as well. In fact, angular momentum is a special example of a representation of the SU(2) Lie algebra– this same structure
of a ladder or lattice of states is everywhere in representation theory. See the notes for Symmetries for more details.

9Remark: gravity is different! Gravity couples directly to energy, not to differences in energy. But in a simple theory like the 1D
harmonic oscillator, all we care about is the spacing of the energy levels.
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That’s about all there is to the quantum harmonic oscillator! We have recovered the quantized energy
levels and defined operators a and a† to move between them. Next time, we’ll repeat the same procedure
with quantum fields.

Lecture 4.

Thursday, October 11, 2018

Today, we’ll introduce the second quantization procedure, which generalizes the quantum harmonic
oscillator to our free scalar field. We’ll find that the Hamiltonian for a free scalar field takes the form of
an integral over momentum of infinitely many uncoupled harmonic oscillator Hamiltonians with some
characteristic frequencies ωp. From this Hamiltonian, we’ll recover the particle interpretation of the
excitations of these harmonic oscillators.

Recall that we can write the Fourier transform of a free scalar field,

φ(x, t) =
∫ d3p

(2π)3 eip·xφ(p, t),

where the momentum-space field obeys[
∂2

∂t2 + (p2 + m2)

]
φ(p, t) = 0.

We also defined ω2
p ≡ p2 + m2, and observed that our theory has plane wave solutions, i.e. the field in

momentum space is simply φ(p, t) = eiωpt.
Last time, we rewrote the coordinate q and momentum p in terms of creation and annihilation operators

a†, a as

q =
1√
2ω

(a + a†),

p = −i
√

ω

2
(a− a†).

Let’s repeat this process to free fields now, defining our field φ and its associated conjugate momentum π
to be

φ(x) =
∫ d3p

(2π)3
1√
2ωp

(apeip·x + a†
pe−ip·x) (4.1)

π(x) =
∫ d3p

(2π)3 (−i)
√

ωp

2
(apeip·x − a†

pe−ip·x). (4.2)

in terms of some new creation and annihilation operators a†
p, ap. These operators now depend explicitly

on momentum, as do the characteristic “frequencies” ωp. Note that if our quantum field theory was
0 + 1-dimensional, the Fourier integral over momentum would be trivial and we would simply recover q
and p from the 1D harmonic oscillator.10

We’ve therefore defined new creation and annihilation operators in order to rewrite the field and its
conjugate momentum as Fourier integrals over momentum space. This process is called second quantization.
With our new ap, a†

q in hand, we now want to impose the canonical commutation relations,

[ap, aq] = [a†
p, a†

q] = 0

and
[ap, a†

q] = (2π)3δ3(p− q).

10The minus sign in the exponential for a† is just convention, I believe. Since the d3p integral is over all three-momenta and p is
therefore just a dummy integration variable, we can certainly rewrite the integral to have the same factor eip·x in the second term.
However, this choice of sign will make the canonical commutation relations manifest when we compute commutators of fields, etc.
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However, in terms of the fields, we can show that the commutation relations for the operators ap, a†
q are

actually equivalent to the field commutation relations

[φ(x), φ(y)] = [π(x), π(y)] = 0

and

[φ(x), π(y)] = iδ3(x− y).

It’s a good exercise to check this explicitly. For instance, we can check one way: assume the a, a†

commutation relations. By definition,

[φ(x), π(y)] =
∫ d3p

(2π)3
d3q
(2π)3

(−1)
2

√
ωq

ωp
{−[ap, a†

q]e
ip·x−iq·y + [a†

p, aq]e−ip·x+iq·y}.

Using the a, a† commutation relations, we can rewrite their commutators as delta functions, (2π)3δ3(p− q).
We then do the integral over q to get∫ d3p

(2π)3

(
−i
2

)
{−eip·(x−y) − e−ip·(x−y)} = iδ3(x− y)

since δ3(x) =
∫ d3p

(2π)3 eip·x and p is a dummy integration variable, so we can freely switch the sign in the
exponent.

Now we compute H in terms of the operators ap, a†
p to find (after some work with δ functions which

you should check) that

H =
1
2

∫
d3x

(
π2 + (∇φ)2 + m2φ2

)
=

1
2

∫
d3x

d3p
(2π)3

d3q
(2π)3

[−√ωpωq

2
(apeip·x − a†

pe−ip·x)(aqeiq·x − a†
qe−iq·x)

+
1

2√ωpωq
(ipapeip·x − ipa†

pe−ip·x)

]
There’s a lot of algebraic manipulation here (details in David Tong’s notes) but the net result is that

H =
1
2

∫ d3 p
(2π)3 ωp(apa†

p + a†
pap).

This is simply the Hamiltonian for an infinite number of uncoupled simple harmonic oscillators with
frequency ωp, just as expected.

Now we can define a vacuum state |0〉 as the state which is annihilated by all annihilation operators ap:

ap |0〉 = 0∀p.

Then computing the vacuum state energy H |0〉 yields

H |0〉 =
∫ d3 p

(2π)3 ωp(a†
pap +

1
2
[ap, a†

p]) |0〉

=
1
2

∫ d3 p
(2π)3 ωp[ap, a†

p] |0〉

=
1
2

∫
d3 p ωpδ3(0) |0〉 ,

which is infinite. Oh no!
What’s happened is that

∫
d3 p

(
1
2 ωp

)
is the sum of ground state energies for each harmonic oscillator,

but ωp =
√
|p|2 + m2 → ∞ as |p| → ∞, so we call this a high-frequency or ultraviolet divergence. That is, at

very high frequencies/short distances, our theory breaks down and we should really cut off the validity of



12 Quantum Field Theory Lecture Notes

our theory at high momentum.11 Of course, there’s another way to handle this divergence in our theory–
just redefine the Hamiltonian to set the ground state energy to zero.12

Thus, we redefine the Hamiltonian for our free scalar field theory to be

H =
∫ d3 p

(2π)3 ωpa†
pap,

such that H |0〉 = 0. Nice. Subtractin’ infinities. Because we’re physicists.
More formally, the difference between the old and new Hamiltonians can be seen as due to an ordering

ambiguity in moving from the classical theory to the quantum one, since our quantum operators (critically)
do not commute. We could have written the classical Hamiltonian as

H =
1
2
(ωq− ip)(ωq + ip)

which is classically the same as the original simple harmonic oscillator but just becomes

ωa†a

when we quantize.

Definition 4.3. We define a normal ordered string of operators φ1(x1)φ2(x2) . . . φn(xn) as follows. We write
colons around the operators to be normal ordered,

: φ1(x1)φ2(x2) . . . φn(xn) :,

and simply move all annihilation operators to the righthand side of the expression (so all the creation
operators are on the left). Note that we totally ignore commutation relations in normal ordering! Just move
the operators around.13

Normal-ordered strings of operators are nice to work with because they make it easy to see what initial
particle states will be annihilated and what final particle states will be created. We will see a theorem shortly
which relates normal-ordered strings to the more physically relevant time-ordered strings of operators.

Example 4.4. For our free scalar field Hamiltonian, the normal-ordered version looks like

: H : =
1
2

∫ d3 p
(2π)3 ωp : (apa†

p + a†
pap) :

=
∫ d3 p

(2π)3 ωpa†
pap.

We’d like to recover particles from this theory. Recall that ∀p, ap |0〉 = 0, so H |0〉 = 0 (where now H
means the normal-ordered version of the Hamiltonian). It’s easy to verify (exercise) that

[H, a†
p] = ωpa†

p

and similarly
[H, ap] = −ωpap.

Let us define the state |p′〉 = a†
p′ |0〉. Then

H
∣∣p′〉 = ∫ d3 p

(2π)3 ωpa†
p[ap, a†

p′ ] |0〉 = ωp′
∣∣p′〉 .

Therefore |p′〉 is an eigenstate of H with an energy given by ωp′ =
√

p′2 + m2 , the relativistic dispersion
relation for a particle of mass m and momentum p′. The creation operator a†

p can therefore be thought of
as creating a single particle of mass m and momentum p when it acts on the vacuum state |0〉 . Recognizing
ωp as the energy, we’ll write Ep instead of ωp.

11This sort of cutoff behavior becomes especially important in the renormalization group, a method of studying the relationships of
different field theories under special scaling transformations. We’ll see this in Statistical Field Theory.

12“We’re not interested in gravity, only energy differences, so we can just subtract ∞.” –Ben Allanach
13Well, there are sign flip subtleties when we come to working with fermions because of their antisymmetrization properties, but

we won’t worry about them for now.
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We can also define the (single-particle) momentum operator P such that

P |p〉 = p |p〉 .

P is simply the quantized version of the momentum operator from the stress-energy tensor:

P = −
∫

π(x)∇φ(x)d3x =
∫ d3p

(2π)3 pa†
pap.

Lecture 5.

Saturday, October 13, 2018

We previously found that we could write the field momentum operator (not the conjugate momentum!)
as

P = −
∫

π(x)∇φ(x)d3x =
∫ d3 p

(2π)3 pa†
pap.

We could also act on our momentum eigenstates with the equivalent of the angular momentum operator Ji,
and what we find is that

Ji |p〉 = 0,

so the scalar field theory represents a spin 0 (scalar) particle.
In general we could imagine cooking up the multi-particle state

|p1, p2, . . . , pn〉 = a†
p1

a†
p2

. . . a†
pn
|0〉 .

But it follows that

|p, q〉 = |q, p〉 ,

since the creation operators for different momenta commute, [a†
p1

, a†
p2
] = 0. So our states are symmetric

under interchange, which means these particles are bosons. The full Hilbert space is spanned by

|0〉 , a†
p |0〉 , a†

p1
a†

p2
|0〉 , . . .

and this space of states is called Fock space.
If we use the number operator

N ≡
∫ d3 p

(2π)3 a†
pap

which counts the number of particles in a state, we find14

N |p1, . . . , pn〉 = n |p1, . . . , pn〉 .

14The calculation is brief. Consider N |p1, . . . , pn〉. We rewrite the multi-particle state as a†
p1

a†
p2

. . . a†
pn
|0〉, and then

N |p1, . . . , pn〉 =
∫ d3 p

(2π)3 a†
papa†

p1
a†

p2
. . . a†

pn
|0〉

=
∫ d3 p

(2π)3 a†
p(2π3δ(p− p1) + ap1 ap)a†

p2
. . . a†

pn
|0〉

= |p1, . . . , pn〉+
∫ d3 p

(2π)3 a†
pa†

p1
apa†

p2
. . . a†

pn
|0〉

= |p1, . . . , pn〉+ a†
p1

N |p2, . . . , pn〉 ,

so proceeding by induction we see that for each a†
pi

we commute through, we pick up a copy of |p1, . . . , pn〉. When the ap has
commuted all the way to the vacuum state |0〉, it simply annihilates it, leaving behind n copies of the initial state |p1, . . . , pn〉.
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But using the commutation relations, it’s easy to check that15

[N, H] = 0,

which means that the number of particles in a given state is conserved in the free theory. Crucially, this is
not true once we add interactions.

Let’s also note that our momentum eigenstates are not localized in space. We can describe a spatially
localized state by a Fourier transform,

|x〉 =
∫ d3 p

(2π)3 e−ip·x |p〉 .

More generally we describe a wavepacket partially localized in position and momentum space by a Fourier
integral of the form

|ψ〉 =
∫ d3 p

(2π)3 e−ip·xψ(p) |p〉 .

Note that neither |x〉 nor |ψ〉 are eigenstates of the Hamiltonian like in QM.
We consider now relativistic normalization. We define the vacuum such that 〈0| 0〉 = 1, which certainly

must be Lorentz invariant (1 is just a number). So in general our momentum eigenstates have the inner
product

〈p| q〉 = 〈0| [ap, a†
q] |0〉 = (2π)3δ3(p− q).

Is this quantity Lorentz invariant? Under the Lorentz transformation, four-momenta transform as

pµ → p′µ = Λµ
ν pν.

We want the momentum eigenstates |p〉 , |p′〉 to be related by a unitary transformation so that the inner
product 〈p| q〉 is Lorentz invariant (i.e. 〈p| q〉 → 〈p′| q′〉 = 〈p|U(Λ)†U(Λ) |q〉) = 〈p| q〉 by unitarity). It
turns out the normalization we’ve chosen is not quite right.

Let us begin by claiming that ∫ d3 p
2Ep

is Lorentz invariant.

Proof. First note that the integration measure
∫

d4 p is Lorentz invariant, since Λ ∈ SO(1, 3) (i.e. det Λ = 1).
Therefore the factor of det Λ we would normally pick up from doing the coordinate transformation is
just 1, so the four-volume element is Lorentz invariant,

∫
d4 p =

∫
d4 p′. It’s also true that the quantity

p2
0 = p2 + m2 is Lorentz invariant (in particular, it expresses the length of a four-vector pµ pµ = m2). The

solutions for p0 have two branches, positive and negative:

p0 = ±
√

p2 + m2.

But our choice of branch is also Lorentz invariant (we can’t go from the positive to negative solutions via
Lorentz transformation). This means that p2

0 − p2 −m2, p0 > 0 will be a Lorentz invariant quantity, and
will remain so even if we put it inside, say, a delta function. Combining the last few facts, we find that∫

d4 pδ(p2
0 − p2 −m2)|p0>0 =

∫ d3 p
2p0

∣∣∣∣
p0=Ep

=
∫ d3 p

2Ep

15Leaving out the integral and normalization factors, the Hamiltonian is apa†
p, and our number operator is similarly a†

qaq. It
follows that

[N, H] ∼ a†
qaqapa†

p − apa†
pa†

qaq

= [a†
q, ap]aqa†

p + apa†
qaqa†

p − apa†
pa†

qaq

= (−(2π)3δ3(p− q))aqa†
p + apa†

q[aq, a†
p] + apa†

pa†
qaq − apa†

pa†
qaq

= −(2π)3δ3(p− q)aqa†
p + (2π)3δ3(q− p)apa†

q.

If we put the integrals back in and integrate over d3q, the delta functions set q = p and therefore [N, H] ∼ −apa†
p + apa†

p = 0.
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is Lorentz invariant, where we have used the fact that

δ(g(x)) = ∑
xi roots of g

δ(x− xi)

|g′(xi)|

to perform the dp0 integral. �

We make the next claim: 2Epδ3(p− q) is the Lorentz invariant version of a δ-function.

Proof. As we just showed,
∫

d3 p/2Ep is Lorentz invariant. It’s also trivial to compute that∫ d3 p
2Ep

2Epδ3(p− q) = 1.

But since
∫

d3 p/2Ep is Lorentz invariant and the RHS of the equation is certainly Lorentz invariant, it
follows that 2Epδ3(p− q) must also be Lorentz invariant. �

We therefore learn that the correctly normalized states are

|p〉 ≡
√

2Ep |p〉 =
√

2Epa†
p |0〉 ,

(where p is now the four-vector p, not the three-vector p) so that these momentum states have the Lorentz
invariant inner product

〈p| q〉 = (2π)32
√

EpEqδ3(p− q).

Note that in the basis of the old three-momentum eigenstates, we could have written the one-particle
identity operator as an integral,

1 =
∫ d3 p

(2π)3 |p〉 〈p| .

We can now rewrite the 1-particle identity operator16 as an integral over the normalized states,

1 =
∫ d3 p

2Ep(2π)3 |p〉 〈p| .

Free C scalar field We could also look at a free complex scalar field ψ, with Lagrangian

L = ∂µψ∗∂µψ− µ2ψ∗ψ.

We can compute the Euler-Lagrange equations varying ψ, ψ∗ separately to find

∂µ∂µψ + µ2ψ = 0 and ∂µ∂µψ∗ + µ2ψ∗ = 0,

where the second equation is simply the complex conjugate of the first. Now we ought to write our field as
a sum of two different creation and annihilation operators:

ψ(x) =
∫ d3 p

(2π)3
1√
2Ep

(bpeip·x + c†
pe−ip·x)

and similarly

ψ†(x) =
∫ d3 p

(2π)3
1√
2Ep

(b†
pe−ip·x + cpe+ip·x)

16To see this really is the identity, let’s act on the normalized |q〉. It’s basically a one-liner:∫ d3 p
2Ep(2π)3 |p〉 〈p| |q〉 =

∫ d3 p
2Ep(2π)3 |p〉

[
(2π)32

√
EpEqδ3(p− q)

]
= |q〉 ,

since the delta function makes the integral trivial by setting p = q.
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so that the conjugate momentum to the field ψ is17

π(x) =
∫ d3 p

(2π)3 i

√
Ep

2
(b†

pe−ip·x − cpeip·x).

The conjugate momentum to ψ† is equivalently π†. The commutation relations are then18

[ψ(x), π(y)] = iδ3(x− y), [ψ(x), ψ†(y)] = 0

=⇒ [bp, b†
q] = (2π)3δ3(p− q) = [cp, c†

q].

The interpretation of these equations is that different types of particle are created by the b†
p and c†

p operators.
They are both spin 0 and of mass µ, so we should interpret them as a particle-antiparticle pair. This doesn’t
work for electrons, which have spin 1/2 and therefore require a more sophisticated spinor treatment, but it
would describe something like a charged pion.

Indeed, if we compute the conserved charges in this theory by applying Noether’s theorem, we get a
conserved charge of the form Q = i

∫
d3x (ψ̇∗ψ−ψ∗ψ̇) or equivalently in terms of the conjugate momentum

(since π = ∂L
∂ψ̇

= ψ̇∗)

Q = i
∫

d3x[πψ− ψ†π†].

After normal ordering (exercise) one can write

Q =
∫ d3 p

(2π)3 (c
†
pcp − b†

pbp) = Nc − Nb,

which shows that our conserved quantity has the interpretation of particle number (counting antiparticles
as −1).

Since there are two real scalar fields in this theory, the Hamiltonian for this theory takes the form

H =
∫ d3 p

(2π)3 Ep(b†
pbp + c†

pcp).

As an exercise one can check that [Q, H] = 0 using the commutation relations,19 and therefore Q is
conserved. This is also true in the interacting theory. Nc, Nb are individually conserved in the free theory,
but in the interacting theory they aren’t– instead, they can be created and destroyed in particle-antiparticle
pairs so that Nc − Nb is constant.

Non-lectured aside: commutation relations and normal ordering First, let’s derive the commutation
relations for our new creation and annihilation operators. From the field commutation relations, we know
that

[ψ(x), π(y)] = iδ3(x− y),

17To actually derive this expression, note that the classical conjugate momentum to ψ is ∂L
∂ψ̇

= ψ̇∗. These fields as we’ve defined
them only depend on space through x, but when we add back in time dependence, a time derivative of a field will bring down factors
of ±iEp. This is more obvious when we write our fields as integrals over e±ip·x , where p and x are four-vectors with p0 = Ep and
x0 = t. In the next lecture, we’ll show that (for example) the field ψ can be rewritten as

ψ(x, t) =
∫ d3 p

(2π)3
1√
2Ep

(
bpe−ip·x + c†

pe+ip·x
)

,

so time derivatives will as promised produce a factor of −iEp for the bp term and a factor of +iEp for the c†
p term. The signs in the

exponents are correct here, since we’re working in the mostly minus convention. For now, we assert that this is the correct conjugate
momentum by fiat.

18Stated as an exercise in class. This computation is longer, see non-lectured aside.
19Leaving off the integrals, we have

[Q, H] ∼ [c†
pcp, b†

qbq] + [c†
pcp, c†

qcq]− [b†
pbp, b†

qbq]− [b†
pbp, c†

qcq].

The commutators of bs and cs are zero since bs and cs always commute. The other two terms with only bs or only cs must cancel since
b and c have the same commutation relations, so any commutators of cs and c†s will be equal to those same commutators with cs
replaced by bs and c†s replaced by b†s everywhere. We conclude that [Q, H] = 0.



5. Saturday, October 13, 2018 17

and if we write out this commutator explicitly in terms of the creation and annihilation operators, we find
that it is

[ψ(x), π(y)] =
i
2

∫ d3 p d3q
(2π)6

(
[bp, b†

q]e
i(p·x−q·y) − [bp, cq]ei(p·x+q·y)

+[c†
p, b†

q]e
−i(p·x+q·y) − [c†

p, cq]e−i(p·x−q·y)
)

. (5.1)

Proving that the field relations hold given the creation and annihilation commutation relations is easy–
if we know that [bp, b†

q] = [cp, c†
q] = (2π)3δ3(p− q) and all other commutators are zero, then Eqn. 5.1

reduces to

[ψ(x), π(y)] =
i
2

∫ d3 p d3q
(2π)3

(
δ3(p− q)ei(p·x−q·y) + δ3(q− p)e−i(p·x−q·y)

)
= i

∫ d3 p
(2π)3 eip·(x−y)

= iδ3(x− y).

Proving the other direction (b, c commutation relations given the field relations) takes a little more work.
We also know that the commutator of two different fields vanishes,

[ψ(x), ψ†(y)] = 0.

Computing this commutator, we find that

[ψ(x), ψ†(y)] =
∫ d3 p d3q

(2π)6
1

2
√

EpEq

(
[bp, b†

q]e
i(p·x−q·y) + [bp, cq]ei(p·x+q·y)

+[c†
p, b†

q]e
−i(p·x+q·y) + [c†

p, cq]e−i(p·x−q·y)
)

. (5.2)

Since this integral is identically zero, the integrand must vanish. The factor 1
2
√

EpEq
is nonzero for any

finite values of Ep, Eq, so we learn that

0 = [bp, b†
q]e

i(p·x−q·y) + [bp, cq]ei(p·x+q·y) + [c†
p, b†

q]e
−i(p·x+q·y) + [c†

p, cq]e−i(p·x−q·y). (5.3)

This is a useful combination, since we can for instance add it to the commutator in Eqn. 5.1 to find that

[ψ(x), π(y)] = i
∫ d3 p d3q

(2π)6

(
[bp, b†

q]e
i(p·x−q·y) + [c†

p, b†
q]e
−i(p·x+q·y)

)
, (5.4)

and since we know from the field relations that the left side is a delta function iδ3(x− y), we can pass back
to the integral form of the delta function to find∫ d3 p

(2π)3 eip·(x−y) =
∫ d3 p d3q

(2π)6

(
[bp, b†

q]e
i(p·x−q·y) + [c†

p, b†
q]e
−i(p·x+q·y)

)
,

or with a little forethought,∫ d3 p d3q
(2π)3 δ3(p− q)ei(p·x−q·y) =

∫ d3 p d3q
(2π)6

(
[bp, b†

q]e
i(p·x−q·y) + [c†

p, b†
q]e
−i(p·x+q·y)

)
.

Matching terms on left and right (which we can do since Fourier modes are orthogonal), we find that

[bp, b†
q] = (2π)3δ3(p− q), [c†

p, b†
q] = 0.

A basically identical calculation (subtracting Eqn. 5.3 rather than adding it) yields the equivalent result for
[cp, c†

q] and [bp, cq]. We find that

[bp, b†
q] = [cp, c†

q] = (2π)3δ3(p− q)

and all other commutators vanish. �
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Next we’ll show some properties of the particle number operator Q. First, normal ordering. Explicitly,
we can write Q in terms of creation and annihilation operators as

Q = i
∫

d3x[π(x)ψ(x)− ψ†(x)π†(x)]

= i
∫

d3x
d3 p d3q
(2π)6

i
2

[
(b†

pe−ip·x − cpeip·x)(bqeiq·x + c†
qe−iq·x)

−(b†
pe−ip·x + cpeip·x)(−bqeiq·x + c†

qe−iq·x)
]

= −
∫

d3x
d3 p d3q
(2π)6 [b†

pbqe−i(p−q)·x − cpc†
qei(p−q)·x)]

= −
∫ d3 p d3q

(2π)3 δ3(p− q)[b†
pbq − cpc†

q]

=
∫ d3 p

(2π)3 [cpc†
p − b†

pbp].

Applying normal ordering simply switches the c and c† so that

: Q :=
∫ d3 p

(2π)3 (c
†
pcp − b†

pbp) = Nc − Nb,

as desired. �

Lecture 6.

Tuesday, October 16, 2018

We’ve been working in the Schrödinger picture where the states evolve in time, but now it will be useful
to pass to the Heisenberg picture, where the states are fixed and the operators evolve in time.

In the Schrödinger picture, it’s not obvious how our theory is Lorentz invariant. We seem to have picked
out time as a special dimension when we write things down (even though we started with a Lorentz
invariant theory, so our final theory should still be Lorentz invariant). The operators φ(x) don’t depend on
t, but the states evolve as

i
d |p〉

dt
= H |p〉 = Ep |p〉 =⇒ |p(t)〉 = e−iEpt |p(0)〉 .

In the Heisenberg picture, things look a bit better for covariance, since time dependence is moved into
the operators. Denoting Heisenberg picture operators as OH and Schrödinger picture operators as OS, we
have20

OH(t) ≡ eiHtOSe−iHt.

Taking the time derivative of each side, one finds that21

dOH
dt

= i[H, OH ].

This is the general time evolution of operators in the Heisenberg picture. It’s clear that OH(t = 0) = OS, so
our operators agree at t = 0 (but in general nowhere else). The field commutators then become equal time
commutation relations:

[φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0
and

[φ(x, t), π(y, t)] = iδ3(x− y).

Exercise 6.1. One should check (exercise) that dφ
dt = i[H, φ] now means that the Heisenberg picture operator

φH satisfies the Klein-Gordon equation, ∂µ∂µφ + m2φ = 0.

20Here, the exponential of an operator is simply defined in terms of the series expansion of e, e.g. eiHt = ∑∞
n=0

(iHt)n

n! .
21Explicitly, dOH (t)

dt = iHeiHtOSe−iHt + eiHtOS(−iH)e−iHt = ieiHt[H, OS]e−iHt = i[H, OH ] since eiHt He−iHt = H. We also see from
this computation that it doesn’t matter to the Hamiltonian itself what picture we’re in, since HS = HH .
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We now write the Fourier transform of φ(x) (where x is now a four-vector) by deriving

eiHtape−iHt = e−iEptap

and

eiHta†
pe−iHt = e+iEpta†

p.

You should also check this (exercise) using the commutation relation [H, ap] = −Epap.
Therefore we can now write

φ(x, t) =
∫ d3 p

(2π)3
1√
2Ep
{ape−ip·x + a†

pe+ip·x}

where x and p are now four-vectors and p0 = Ep.

Causality We might be concerned about the causal structure of this theory, since φ and π satisfy equal-time
commutation relations. In general a Lorentz transform might mix up events which in one frame take place
at “equal times.” So what about arbitrary space-time separations? It turns out that causality requires that
the commutators of spacelike separated operators is zero, i.e. two events which are spacelike separated
cannot impact one another.

[O1(x), O2(y)] = 0 ∀(x− y)2 < 0.

Does this condition hold for our field operators? Let’s define

∆(x− y) ≡ [φ(x), φ(y)]

and expand in the Fourier basis.

∆(x− y) =
∫ d3 p

(2π)6
d3 p′√
4EpEp′

(
[ap, a†

p′ ]e
−i(p·x−p′ ·y) + [a†

p, ap′ ]e
i(p·x−p′ ·y)

)

=
∫ d3 p

2Ep(2π)3

(
e−ip·(x−y) − eip·(x−y)

)
Remarkably, this is just a c-number– it’s not an operator at all but a (classical) number.22 It is Lorentz
invariant since the integration measure d3 p/(2Ep) is Lorentz invariant and the integrand is too (it depends
only on p · (x− y), which is the product of two four-vectors, and is therefore an invariant scalar). Moreover,
each term is separately Lorentz invariant. In addition, if x − y is spacelike then x − y can be Lorentz
transformed to y− x in the first term, giving 0. It does not vanish for timelike separations, e.g.

[φ(x, 0), φ(x, t)] =
∫ d3 p

(2π)32Ep
(e−imt − e+imt) 6= 0.

And at equal times

[φ(x, t), φ(y, t)] =
∫ d3 p

(2π)32Ep
(eip·(x−y) − e−ip·(x−y)) = 0

(since we can send the integration variable p→ −p). One can also see in this way that the commutator for
spacelike separated operators vanishes, since a general spacelike separation can always be transformed into
a frame where the two events take place at equal times.

22Wikipedia says this terminology is due to Dirac, who coined it to contrast with q-numbers (quantum numbers), which are just
operators.
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Definition 6.2. We can then introduce the idea of a propagator– if we initially prepare a particle at point y,
what is the amplitude to find it at x? We can write this as

〈0| φ(x)φ(y) |0〉 =
∫ d3 pd3 p′

(2π)6
√

4EpEp′
〈0| apa†

p′ |0〉 e−ip·x+ip′ ·y

=
∫ d3 pd3 p′

(2π)6
√

4EpEp′
〈0| [ap, a†

p′ ] |0〉 e−ip·x+ip′ ·y

=
∫ d3 pd3 p′

(2π)3
√

4EpEp′
δ3(p− p′)e−ip·x+ip′ ·y

=
∫ d3 p

(2π)32Ep
e−ip·(x−y) ≡ D(x− y),

where we have used the fact that ap kills the ground state (so we can freely replace apa†
p′ with the

commutator [ap, a†
p′ ]) and used the resulting delta function to integrate over d3 p′.

In fact, one can show23 that for spacelike separations (x− y)2 < 0, the propagator decays as D(x− y) ∼
e−m|x−y|. The quantum field seems to “leak” out of the light cone. But we also computed that

∆(x− y) = [φ(x), φ(y)] = D(x− y)− D(y− x) = 0

if (x− y)2 < 0. We can interpret this to mean that there’s no Lorentz invariant way to order the two events
at x and y. A particle can travel as easily from y→ x as x → y, so in a quantum measurement these two
amplitudes cancel. With a complex scalar field, the story is more interesting. We find instead that the
amplitude for a particle to go from x → y is cancelled by the amplitude for an anti-particle to go from
y→ x.24 This is also the case for the real scalar field, except the particle is its own antiparticle.

Definition 6.3. We now introduce the Feynman propagator ∆F, which is like a regular propagator but with
time ordering baked in. That is,

∆F =

{
〈0| φ(x)φ(y) |0〉 for x0 > y0

〈0| φ(y)φ(x) |0〉 for y0 > x0.

We claim the Feynman propagator can also be written as

∆F =
∫ d4 p

(2π)4
i

p2 −m2 e−ip·(x−y).

Note that this is Lorentz invariant– the volume element is certainly Lorentz invariant, and everything else
is scalars. But there’s an issue– this integral has a pole whenver p2 = m2, or equivalently for each value of
p, p2 −m2 = (p0)2 − p2 −m2 = 0 when p0 = ±Ep = ±

√
p2 + m2. We would like to integrate over p0 to

recover the earlier form of the propagator, so we can either deform the contour or push the poles of the real
p0 axis with an iε prescription.

We’ll finish the proof next time, but by analytically continuing p0 to the complex plane, making this iε
prescription, and closing the contour appropriately we can do the p0 integral and find that what we get is
exactly the Feynman propagator as defined earlier in terms of time ordering.

Proof of Exercise 6.1 Let’s find the equation of motion for φ. Recall that [φ(x), φ(y)] = 0. We can also
show that ∇φ(y) and φ(x) commute:

∇φ(y)φ(x) = ∇y(φ(y)φ(x)) = ∇y(φ(x)φ(y)) = φ(x)∇φ(y)

23The easiest way to do this is to set y = 0 and take x and y at equal times, x0 = y0 = 0. This gets rid of p0, and from here you can
switch to spherical coordinates, rewriting p · (x) as |p||x| cos θ.

24See also Wheeler’s “one-electron universe”– https://en.wikipedia.org/wiki/One-electron_universe.

https://en.wikipedia.org/wiki/One-electron_universe
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so the only term in the Hamiltonian we need to worry about is the π2 term.

φ̇ = i[H, φ] =
i
2

∫
d3y

[
π2(y) + (∇φ(y))2 + m2φ(y)2, φ(x)

]
=

i
2

∫
d3y(π2(y)φ(x)− φ(x)π2(y))

=
i
2

∫
d3y(π(y)(−[φ(x), π(y)] + φ(x)π(y))− φ(x)π2(y))

=
i
2

∫
d3y(−iδ3(x− y)π(y) + π(y)φ(x)π(y)− φ(x)π2(y)

=
i
2

∫
d3y(−2iδ3(x− y)π(y))

= π(x).

We can also compute the time evolution for π. Here, we do have to worry about the ∇φ terms as well as
the φ terms.

π̇ = i[H, π] =
i
2

∫
d3y

[
π2(y) + (∇φ(y))2 + m2φ(y)2, π(x)

]
=

i
2

∫
d3y∇φ(y)∇y(φ(y)π(x))−∇y(π(x)φ(y))∇φ(y) + 2im2δ3(x− y)φ(y)

=
i
2

∫
d3y∇φ(y)∇y([φ(y), π(x)])−∇y(−[φ(y), π(x)])∇φ(y) + 2im2δ3(x− y)φ(y)

=
i
2

∫
d3y∇φ(y)∇y(iδ3(y− x)) +∇y(iδ3(y− x))∇φ(y) + 2im2δ3(x− y)φ(y)

=
i
2

∫
d3y

(
−2iδ3(x− y)∇2φ(y) + 2im2δ3(x− y)φ(y)

)
= ∇2φ−m2φ.

(where we have integrated by parts to move the ∇ from the delta function to φ). Thus φ obeys the equation

φ̈ = π̇ = ∇2φ−m2φ

or equivalently

φ̈−∇2φ + m2 = ∂µ∂µφ + m2 = 0.

Therefore φ satisfies the Klein-Gordon equation. (This is also in David Tong’s notes.) �
We’ll also make note of a potentially useful identity which can be proved by induction: if [a, b] = α, then

[an, b] = nαan−1.

Proof of Heisenberg picture ap, a†
p Here, we’ll show that

eiHtape−iHt = e−iEptap

using the commutation relation [H, ap] = −Epap. First, I’ll claim that

Hnap = a(−Ep + H)n.

Let’s prove it by induction: for the base case, n = 1 and

Hap = [H, ap] + ap H = −Epap + ap H = ap(−Ep + H).

Now the inductive step: suppose the hypothesis holds for n. Then

Hn+1ap = H(Hnap) = Hap(−Ep + H)n = ap(−Ep + H)n+1.
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Therefore we can use this in the expansion of eiHt.

eiHtape−iHt =
∞

∑
n=0

(iHt)n

n!
ape−iHt

= ap

∞

∑
n=0

(it(−Ep + H))n

n!
e−iHt

= ape−iEpteiHte−iHt

= ape−iEpt.

Rather than repeating this whole calculation, we can simply take the hermitian conjugate of each side (since
H is hermitian) to get

eiHta†
pe−iHt = e+iEpta†

p.

Note that the sign flip in the exponent of e±iHt and the reversing of order from taking the hermitian
conjugate cancel out. So the operators a, a† do evolve in a nice way that allows us to write φ in terms of a
four-vector product in the exponent, p · x, and in turn this helps us to see that our theory has a sensible
causal structure under Lorentz transformations. �

Lecture 7.

Thursday, October 18, 2018

Today, we’ll complete our initial discussion of propagators and then introduce interacting fields.
Last time, we claimed the Feynman propagator could be written as an integral over d4 p, and reduces to

the regular propagator D(x− y) or D(y− x) depending on the sign of x0 − y0. The propagator D(x− y)
was an integral over d3 p only, so we need to integrate over the p0 component. To evaluate the p0 integral,
one can make an iε prescription and modify the pole to

∆F =
∫ d4 p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y)

with ε > 0 and small. This helps us to keep track of which pole is inside our contour, but we can also
equivalently shift the contour (see picture). This shifts the pole at Ep to Ep − iε and from −Ep to −Ep + iε.
This is a little quick, so I’ll work it out more carefully in a footnote later.

Which way we close the contour depends on the sign of x0 − y0 since (x0 − y0) > 0 means that
eip0(x0−y0) → 0 when p0 → +i∞, and for (x0 − y0) < 0 it goes to 0 when p0 → −i∞.

In any case, we can evaluate this with the Cauchy integral formula to find

∆F(x− y) =
∫ d3 p

(2π)3
1

2Ep
e−ip·(x−y) = D(x− y)

for x0 > y0 and

∆F(x− y) =
∫ d3 p

(2π)3
1

2Ep
e−ip·(y−x) = D(y− x)

for y0 > x0, where the sign flip has come from which way we close the contour and therefore which pole
we pick up in the integration.

We can now observe that ∆F is the Green’s function of the Klein-Gordon equation. A Green’s function
(perhaps familiar from a class on PDEs or electrodynamics) is simply the inverse of a differential operator;
it is a function which yields a delta function when you hit it with a given differential operator. You might
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have seen the Green’s function for Poisson’s equation, for instance.25 In this case,

(∂2
t −∇2 + m2)∆F(x− y) =

∫ d4 p
(2π)4

i
p2 −m2 + iε

(−p2 + m2)e−ip·(x−y)

= −i
∫ d4 p

(2π)4 e−ip·(x−y)

= −iδ4(x− y).

It can be useful to choose other integration contours, e.g. for the retarded propagator which takes

∆R(x− y) =

{
[φ(x), φ(y)] : x0 > y0

0 : y0 > x0

The advanced propagator is similarly defined but for x0 < y0. In any case, the Feynman propagator is the
most applicable for our purposes.

Interacting fields Our free theories have made for nice, exactly solvable models. They have Lagrangians
which are quadratic in the fields, which means that

◦ the equations of motions are linear
◦ we have exact quantization
◦ we can produce multi-particle states, but there is no scattering.

It’s this third point which is not realistic– we know in general that particles should interact and scatter.
Therefore, we guess that interactions must come from higher-order terms in the Lagrangian L. For example,
in a real scalar field φ we could more generally write

L =
1
2

∂µφ∂µφ− 1
2

m2φ2 − ∑
n=3

λn

n!
φn,

where the λns are called coupling constants. Ideally, we’d like these corrections to be small so we can take a
perturbative expansion about the free theory solutions, which already look like particles.

Naïvely, we might say that small perturbations means that λn � 1, but that only makes sense when λn
is dimensionless. So let’s do some dimensional analysis to figure out what the dimensions of λn are. Recall
that the action S is dimensionless, [S] = 0. Since S =

∫
d4xL and [d4x] = −4, we find that [L] = 4. From

looking at the kinetic term ∂µφ∂µφ and using the fact that [∂µ] = +1, we conclude that [φ] = 1, [m] = 1, and

[λn] = 4− n

(where this 4 comes from the fact we are working in 3 + 1 spacetime dimensions).
What we discover is that there are three important cases here:
(a) [λ3] = 1. The dimensionless parameter is λ3/E, where E is the energy scale of the process of

interest (e.g. the scattering energy, on the order of TeV at the LHC). If λ3/E� 1, then λ3φ3/3! is
a small perturbation at high energies. We call this a relevant perturbation because it is important
at low energies. In a relativistic setting, E > m so we can make the perturbation small by taking
λ3 � m. We call this class of theories with positive mass dimension coupling constants renormalizable,
meaning that we can reasonably deal with the infinities which crop up from weak coupling.

(b) [λ4] = 0. Here, λ4φ4/4! is small if λ4 � 1. We call these marginal couplings, and these are also
renormalizable.

(c) [λn] = 4− n for n ≥ 5. These are called irrelevant couplings. The dimensionless parameter is λnEn−4,
and they are small at low energies but large at higher energies. These lead to non-renormalizable
theories, where the infinities are bigger and scarier and we cannot sweep them under the rug by
just subtracting off infinity.

25Green’s functions are useful because they allow us to easily fit the boundary conditions. Consider the operator equation
Ôψ(x) = f (x) for some differential operator Ô and some given function f (x). If we could just write down Ô−1, it would be easy
enough to solve any equation of this form: ψ(x) = Ô−1 f (x). This is sort of what Green’s functions let us do. If we know that
Ô∆(x− y) = δ(x− y), it follows that Ô

[∫
dy∆(x− y) f (y)

]
=
∫

dyδ(x− y) f (y) = f (x) (where any derivatives in Ô are taken with
respect to x), so

∫
dy∆(x− y) f (y) = ψ(x) solves the differential equation.
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On the one hand, the nature of irrelevant couplings means that we can describe (relatively) low-energy
physics well by only looking at the first few terms in the perturbative expansion, but it also makes it very
difficult to probe very high-energy physics (for instance, on the scale of quantum gravity).

Example 7.1. Let’s consider φ4 theory, with the Lagrangian

L =
1
2

∂µφ∂µφ− 1
2

m2φ2 − λφ4

4!
; λ� 1.

We can already guess at the effects of this final term– in particular, [H, N] 6= 0 =⇒ particle number is
no longer conserved.26 Expanding the last term, we expect some big integrals which will have terms like∫

. . . ((a†
p)

4 . . .) +
∫

. . . a†
p

3
ap + . . .

which will destroy particles.

Example 7.2. We could also consider scalar Yukawa theory with two fields, ψ ∈ C, φ ∈ R, and the
Lagrangian

L = ∂µψ∗∂µψ +
1
2

∂µφ∂µφ− µ2ψ∗ψ− 1
2

m2φ2 − gψ∗ψφ.

In this theory, [g] = 1 and we take g� m, g� µ. We get a Noether current by noticing that the Lagrangian
is invariant under ψ→ eiθψ, and this current has the interpretation of charge conservation– the number of
ψ particles minus the number of ψ anti-particles is conserved, but there is no such conservation law for the
number of real scalar φs.

The interaction picture Previously, we saw the familiar Schrödinger picture where operators are time-
independent and states evolve in time by the Schrödinger equation,

i
d
dt
|ψ〉S = H |ψ〉S .

We then introduced the Heisenberg picture, where we moved the explicit time dependence into the
operators,

|ψ〉H = eiHt |ψ〉S , OH(t) = eiHtOSe−iHt.

The interaction picture is a hybrid of the Heisenberg and Schrödinger pictures. It splits the Hamiltonian
into a free theory part and an interaction part:

H = H0 + Hint.

In the interaction picture, states evolve with the interacting Hamiltonian Hint and operators evolve by the
free Hamiltonian H0.

Example 7.3. In φ4 theory, we have Lint = −λφ4/4! with

Hint = −
∫

d3xLint = +λ
∫

φ4/4!

and H0 the standard free theory Hamiltonian H0 =
∫

d3x 1
2 π2 + 1

2 (∇φ)2.

Non-lectured supplement: contour integration and the p0 integral If you haven’t seen contour integration
before, it’s basically an integration technique for certain real integrals which makes use of a theorem called
the Cauchy residue theorem. I’ll use some different notation here (ks instead of ps and ωk instead of Ep),
but all the physics is the same. I’m also setting y = 0 here since ∆F only depends on the combination
|x− y|.

26Those of you with some familiarity with Feynman diagrams can probably cook up a simple diagram which goes from one to
three particles using the φ4 interaction. The interaction has four lines so just put one on the left and three on the right (no need to
worry about antiparticles since this is a scalar field).
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Cauchy came up with a nice formula which says that if a function f (z) is analytic27 on and inside a
simple28 closed curve C, then the value of the following contour integral29 along C is given by∮ f (z)

z− a
dz = 2πi f (a)

for z = a a point inside C.
Mathematicians usually write this as a formula for the value of f (a) in terms of the contour integral, but

for our purposes it is more useful as a formula for the integral. The proof is not complicated and fits on
a page or two (see for instance Boas Mathematical Methods 585-586 or http://mathworld.wolfram.com/
CauchyIntegralFormula.html) but I will not repeat it here.

What’s the practical use of this formula? Essentially, we can use it to compute real integrals which might
have poles (singular points) along the integration path. Consider our expression for the propagator, and
suppose ε = 0. Then the denominator becomes

k2 −m2 = (k0)2 − k2 −m2 = (k0)2 −ω2
k

and written this way, it is clear that the integrand is going to become singular at k0 = ±ωk. Therefore, we
make an ”iε prescription,” meaning that we add iε (ε > 0 and small) to push the poles off the real line into
the complex plane so we can do the integral, and hope nothing bad happens as we let ε go to zero.

We’ll need one more trick to compute this integral. You might have noticed that our integral isn’t a
closed curve yet (as required by the Cauchy formula)– it is an integral

∫ ∞
−∞ dk0. Therefore, we must close

the contour by adding a curve whose final contribution to the overall integral will be zero. To warm up,
suppose we want to compute ∫ ∞

−∞
dz

eiz

z− iz0

for z0 possibly complex. We can close the contour by adding a curve in the upper half-plane, ”out at +i∞.”
See Figure 1 for an illustration.

How do we decide whether to close the contour in the upper or lower half-plane? Notice that in the
upper half-plane, z = x + iy for y > 0, so eiz = ei(x+iy) = e−yeix with y > 0. Therefore, eiz is exponentially
damped in the upper half-plane and contributes basically zero to the overall integral. So we can close the
curve ”for free” and write ∫ ∞

−∞
dz

eiz

z− z0
=
∮

dz
eiz

z− z0
= 2πieiz0

if z0 has imaginary part > 0 (is inside the contour) and 0 otherwise. Thanks, Cauchy integral formula.
In fact, the formula lends itself to an even better generalization, the Cauchy residue theorem. It states that∮

C
f (z)dz = 2πi · sum of the residues of f (z) inside C,

where the integral around C is in the counterclockwise direction, and a residue is basically the value at the
function at the pole if it didn’t have that pole. Quick example: for the function f (z) = z

(1+z)(3−z) , f (z) has

a pole at z = 3. The residue R(3) of f (z) at z = 3 is simply R(5) = z
1+z |z=3 = 3

4 .
So to summarize, close the contour based on what the integrand is doing at ±i∞. Check which poles

are inside your contour, and plug up the singularities one at a time to compute the residues. Sum up the
residues, multiply by 2πi, and you’ve got the value of your integral.

Returning to the problem at hand, we wish to compute the integral∫
dk0 eik0x0

(k0)2 − (ω2
k − iε)

.

27not singular
28does not cross itself
29A fancy name for a closed line integral in the complex plane.

http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
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Figure 1. An illustration of closing the contour for a real integral (in red) so we can use the
Cauchy integral formula to perform the integral. The integral along the light blue curve∫

γ dz contributes nothing to the overall integration, so we can use it to close the contour
out at +i∞. Note the curve runs counterclockwise. If it ran clockwise, we would pick up a
minus sign.

We have two poles at ±
√

ω2
k − iε, which in the ε→ 0 limit become +ωk − iε and −ωk + iε. Therefore, we

rewrite as ∫ ∞

−∞
dk0 eik0x0

(k0 − (ωk − iε))(k0 − (−ωk + iε))
.

Since eik0x0
is exponentially damped in the upper half-plane, we close the contour at +i∞, enclosing the

pole at −ωk + iε (recall ωk is real and ε is positive). Therefore, calculating the residue, this integral comes
out to

2πi
e−iωkx0

−2ωk

(letting ε→ 0) and we conclude that for x0 > 0,

∆F(x) = −i
∫ d3k

(2π)32ωk
e−i(ωkt−k·x).

A similar calculation holds for x0 < 0, so we recover our friend the Feynman propagator, which correctly
accounts for the sign of x0.

Lecture 8.

Saturday, October 20, 2018

Today, we’ll take our first look at interacting theories in detail! Let’s first complete our description of the
interaction picture. Operators in the interaction picture evolve in time by the free Hamiltonian:

OI(t) ≡ eiH0tOSe−iH0t,
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with OS the Schrödinger picture operator, while states evolve by

|ψ(t)〉I = eiH0t |ψ(t)〉S = e−iHintt |ψ(0)〉S .

Note that the interacting Hamiltonian also has an interaction picture counterpart,

HI ≡ (Hint)I = eiH0tHinte−iH0t. (8.1)

In the context of our quantum fields,

φI(x) = eiH0tφ(x)e−iH0t

so that the interaction picture field φI obeys the Klein-Gordon equation

(∂2 + m2)φI = 0,

with solution

φI(x) =
∫ d3 p

(2π)3
√

2Ep
(ape−ip·x + a†

peip·x).

Here, note that we’re taking the four-vector inner product p · x as in the Heisenberg picture, with p0 = Ep

and x0 = t. We also see that φI(t = 0, x) = φS(x), so the fields at t = 0 agree with the Schrödinger picture
fields.

As before,
[ap, a†

p′ ] = (2π)3δ3(p− p′),

with other brackets vanishing. Note that the state |0〉 (satisfying ap |0〉 = 0) is the vacuum of the free
theory, not the interacting theory. This means we will have to be a little careful when we compute the
transition amplitudes between states, since they are measured relative to vacuum fluctuations, which will
start bubbling as soon as we turn on interactions.

As operators, interaction picture fields are related to the Heisenberg picture ones by

φH(t, x) = eiHte−iH0tφI(x)eiH0te−iHt,

where e−iH0tφI(x)eiH0t = φS(x). We can also regroup the operators here to write

φH(t, x) = U(t, 0)†φI(t, x)U(t, 0),

where
U(t, t0) ≡ eiH0te−iH(t−t0)e−iH0t0 (8.2)

is a unitary time evolution operator. U is defined such that30

U(t1, t2)U(t2, t3) = U(t1, t3)

and U(t, t) = 1. Equivalently, we see that31

|ψ(t)〉I = U(t, t′)
∣∣ψ(t′)〉I .

That is, U evolves interaction picture states in time.
Now, actually computing U in terms of operator exponentials would be a pain, especially since we might

have multiple fields doing their thing (creating and destroying particles) at different points in time. Based

30We can verify this first property by a quick computation:

U(t1, t2)U(t2, t3) =
(

eiH0t1 e−iH(t1−t2)e−iH0t2
) (

eiH0t2 e−iH(t2−t3)e−iH0t3
)

= eiH0t1 e−iH(t1−t2)e−iH(t2−t3)e−iH0t3

= eiH0t1 e−iH(t1−t3)e−iH0t3 = U(t1, t3).

Note that H and H0 are by no means guaranteed to commute, so we cannot naïvely group them together in an exponent, i.e.
eiH0te−iHt 6= ei(H0−H)t. Operator exponentials are different. In doing this calculation, we were only allowed to add the exponents
when the operator in the exponent was the same in both terms.

31If this isn’t obvious, note that since |ψ(t)〉S = e−iHt |ψ(0)〉S, it follows that interaction picture states evolve as

|ψ(t)〉I = eiH0t |ψ(t)〉S = eiH0te−iHt |ψ(0)〉S = U(t, 0) |ψ(0)〉S = U(t, 0) |ψ(0)〉I ,

since the states agree independent of picture at t = 0. Applying the property that U(t1, t2)U(t2, t3), we see that |ψ(t)〉I =

U(t, t′) |ψ(t′)〉I for general t, t′. So U really does have the function of being a time evolution operator on interaction picture states.
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on the properties of U we have defined, can we find a more tractable expression for the time evolution
operator?

By differentiating our expression for U with respect to time, we see that

i
dU(t, 0)

dt
= i
[
iH0eiH0te−iHt + eiH0t(−iH)e−iHt

]
= eiH0t(H − H0)e−iHt

= eiH0t(Hint)Se−iH0teiH0te−iHt

= HI(t)U(t, 0),

which tells us that the operator U obeys the equivalent of the Schrödinger equation.
If (Hint)I = HI were just a function, we could solve this by U = exp[−i

∫ t
t0

HI(t′)dt′]. However, because
Hi is an operator, life is not so simple, as we have ordering ambiguities. The issue becomes clear when we
write out the first few terms in the exponential:

exp[−i
∫ t

t0

HI(t′)dt′] = 1− i
∫ t

t0

HI(t′)dt′ +
(−i)2

2!

(∫ t

t0

HI(t′)dt′
)2

. (8.3)

If we take the time derivative, Leibniz tells us that this quadratic term becomes

− 1
2

∫ t

t0

HI(t′)dt′HI(t)−
1
2

HI(t)
∫ t

t0

HI(t′)dt′. (8.4)

But this first term is a problem since the HI(t) is on the wrong side of the integral and we can’t commute it
through because [HI(t′), HI(t′′)] 6= 0 for t′ 6= t′′.

However, our differential equation for U tells us that a solution for U(t, t0) is given by32

U(t, t0) = 1 + (−i)
∫ t

t0

dt′HI(t′)U(t′, t0).

Therefore we can substitute this expression for U(t, t0) back into itself to get the infinite series

U(t, t0) = 1 + (−i)
∫ t

t0

dt′HI(t′) + (−i)2
∫ t

t0

dt′
∫ t′

t0

dt′′HI(t′)HI(t′′) + . . . .

From the ranges of integration, it’s clear that the HIs are automatically time-ordered– for instance, HI(t′′)
always takes place at t′′ ≤ t′. Note that we could have rewritten this last term as∫ t

t0

dt′
∫ t′

t0

dt′′HI(t′)HI(t′′) =
∫ t

t0

dt′′
∫ t′′

t0

dt′HI(t′′)HI(t′)

=
∫ t

t0

dt′
∫ t

t′
dt′′HI(t′′)HI(t′),

where in the first line, the range of integration is t′ ≤ t′′, while in the second it is t′′ ≥ t′. Note that this
expression is time-ordered too, so HI(t′′)HI(t′) = T[HI(t′)HI(t′′)] for these limits of integration. It follows
that the quadratic term can be written

(−i)2
∫ t

t0

dt′
∫ t′

t0

dt′′HI(t′)HI(t′′) =
(−i)2

2

[∫ t

t0

dt′
∫ t′

t0

dt′′T[HI(t′)HI(t′′)] +
∫ t

t0

dt′
∫ t

t′
dt′′T[HI(t′)HI(t′′)]

]
=

(−i)2

2

∫ t

t0

dt′
∫ t

t0

dt′′T[HI(t′)HI(t′′)].

We can play the same game for higher-order terms, and we’ll get a symmetry factor of n! to a term with n
copies of HI(t′). With the same limits of integration on dt′, dt′′, etc., these higher-order terms look a lot like
the power series expansion of an exponential. This leads us to make the following definition.

32Easy to check. By the fundamental theorem of calculus (what a throwback), i d
dt

[
1 + (−i)

∫ t
t0

dt′HI(t′)U(t′, t0)
]
= HI(t)U(t, t0)

and U(t0, t0) = 1 + (−i)
∫ t0

t0
dt′HI(t′)U(t′, t0) = 1, so it satisfies the boundary conditions.
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Definition 8.5. Using time ordering, we find that U can be written compactly as

U(t, t0) = T exp
{
−i
∫ t

t0

dt′HI(t′)
}

,

which we call Dyson’s formula. (Note that U(t, t0) = T exp{+i
∫ t

t0
dt′LI(t′)}, in terms of the Lagrangian.)

This is a formal result, but we usually just expand to some finite order in terms of the coupling constants
which live in the interacting Hamiltonian HI .

This is the last bit of machinery we need to start computing scattering amplitudes in quantum field
theory!

Definition 8.6. The time evolution used in scattering theory is called the S-matrix (S for scattering). The S
matrix is defined to be

S = lim
t→∞,t0→−∞

U(t, t0).

We will consider interactions where the final state | f 〉 and the initial state |i〉 are well-separated from
each other and are far away from the interaction. Therefore, the initial and final states |i〉 , | f 〉 behave like
free particles, i.e. they are eigenstates of H0.33

This should seem at least plausible: at late/early times, the particles are well-separated and don’t feel the
effect of each other. As they approach, they may interact before going their separate ways. The scattering
amplitude is then

lim
t→∞,t0→−∞

〈 f |U(t, t0) |i〉 = 〈 f | S |i〉 .

Note that there are some cases that need to be treated differently, like bound states. For instance, a
proton and an electron at low energies could interact to form a hydrogen atom, p + e− → the bound state
(H). Here, the assumption that the particles end up well-separated is violated. It turns out that such
solutions appear as poles in the S-matrix, but this is a more advanced topic and we won’t discuss it further
here.

Let’s return to scalar Yukawa theory. Now, we’ll drop the I subscripts and assume uniformly that we are
in the interaction picture. Discarding the kinetic and mass terms from the free theory, we are left with the
interaction Hamiltonian

H = gψ∗ψφ,

where ψ and ψ∗ are (anti-)nucleons (e.g. a proton or neutron), and φ is a meson. What do each of these
fields do?

◦ φ has a and a† terms which destroy and create mesons, respectively.
◦ ψ has b and c† terms, where b destroys a nucleon and c† creates an anti-nucleon.
◦ ψ∗ has b† and c terms, where b† creates a nucleon and c destroys an anti-nucleon.

Looking at the possible terms in the Hamiltonian, we can already see interesting behavior– we’ll have
terms where nucleon-anti-nucleon pairs are created and destroyed, e.g. b†c†a which destroys a meson and
produces a nucleon-anti-nucleon pair. This contributes to meson decay, φ→ ψψ̄.34 What we recover is the
leading order in g term in the S-matrix, and an interaction that schematically looks like Fig. 2.

At second order, S can include more complicated terms like

g2(b†c†a)(a†cb),

which describes nucleon-anti-nucleon scattering. We can draw a nice diagram for this process too, seen in
Fig. 3.

33This is a heuristically useful description but a little slippery in the details. A priori, there’s no reason that eigenstates of the free
Hamiltonian should be eigenstates of the interacting Hamiltonian. If you prefer, you can think of the scattering amplitude as the
overlap (as measured by the inner product) between initial free particle states and final free particle states, with the possibility for
some interaction in between. Even if we started with free particle eigenstates, our interaction is sure to evolve these states to some
new ones, but we can look at the overlap between the time evolved versions of the free particle states U(t, t0) |i〉 and the final free
particle states we’re interested in, 〈 f | .

34When we talk about the fields, we use ∗, but when we denote antiparticles, we usually use the bar notation, e.g. an anti-ψ is a ψ̄.
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Figure 2. The Feynman diagram for meson decay, φ→ ψψ̄. Thinking perturbatively, this
is the leading order behavior in the expansion of 〈 f | S |i〉 where |i〉 ∼ a† |0〉, the one-meson
state, and | f 〉 ∼ b†c† |0〉, the state with a nucleon and an anti-nucleon.

Figure 3. One Feynman diagram for nucleon-anti-nucleon scattering. Schematically, a
nucleon and an anti-nucleon collide and annihilate into a meson, which then decays back
to a nucleon and anti-nucleon. This isn’t the only diagram at this order– we’ll see that
there’s also a contributing diagram where the nucleon and anti-nucleon exchange a meson
and then go on their way.

Returning to the case of meson decay, we have some φ meson going in with some defined momentum p
as our initial state, and similarly we have ψ, ψ̄ going out with some momenta q1, q2. We can write these
states as

|i〉 =
√

2Epa†
p |0〉

and

| f 〉 =
√

4Eq1 Eq2 b†
q1

c†
q2
|0〉 .

To zeroth order there is no interaction and the scattering amplitude is zero, so to leading order, we have

〈 f | S |i〉 = −ig 〈 f |
∫

d4xψ∗(x)ψ(x)φ(x) |i〉+ O(g2).

We’ll compute this exactly next time and argue that the O(g2) corrections to this process are relatively
small, arriving at our first quantum field theory scattering amplitude.
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Lecture 9.

Tuesday, October 23, 2018

Today, we’ll introduce Wick’s formula and contractions, calculate some more scattering amplitudes, and
maybe see our first Feynman diagrams for calculating amplitudes in a more convenient way.

First, we complete the calculation of the order g scattering amplitude from last time. We were interested
in meson decay, where we prepared initial and final states

|i〉 =
√

2Epa†
p |0〉 (9.1)

and
| f 〉 =

√
4Eq1

Eq2
b†

q1
c†

q2
|0〉 , (9.2)

and we were interested in the scattering amplitude 〈 f | S |i〉. To leading order, we found that

〈 f | S |i〉 = −ig 〈 f |
∫

d4xψ∗(x)ψ(x)φ(x) |i〉+ O(g2), (9.3)

and we’ll now demonstrate how to compute this.
We know how to expand each of these fields in terms of their respective creation and annihilation

operators, and we want to make sure that the initial state and final state are indeed proportional to each
other so that this QFT amplitude will be reduced to a c-function of the four-momenta (i.e. it is just a
number).

Note that when we put fields in, the creation and annihilation operators have to precisely cancel out
the particles in the initial and final states. For instance, in the field φ we have both a†

p and ap terms, but
our initial state |i〉 already has an a† in it. So the a† bit of φ acting on |i〉 will produce a two-meson state
proportional to a†

p′ a
†
p |0〉 which the ψs won’t touch, and this means that the inner product of this two-meson

state with 〈0| will be zero. Alternately, you can think of the a† from φ as acting on the 〈0| on the left, since
we can freely commute it through the ψs. That is, ak |0〉 = 0 =⇒ 〈0| a†

k = 0, so in general any state with
particles in it is going to be orthogonal to the vacuum. Our problem is therefore reduced to matching the
operators in our fields with the operators in the initial and final states |i〉 and | f 〉.

If we expand out the field φ, our matrix element now takes the form

〈 f | S |i〉 = −ig 〈 f |
∫

d4xψ∗(x)ψ(x)
∫ d3k

(2π)3

√
2Ep√
2Ek

(aka†
pe−ik·x + a†

ka†
peik·x) |0〉 . (9.4)

But as we’ve just argued, this second term is zero, and we can switch the ak, a†
p at the cost of a delta

function (2π)3δ3(k− p), which allows us to do the integral over d3k.35

Now expanding the fields ψ∗, ψ, we get

〈 f | S |i〉 = −ig 〈 f |
∫

d4xψ∗ψ(x)e−ip·x |0〉

= −ig 〈0|
∫ d4x

(2π)6
d3k1d3k2√

4Ek1 Ek2

√
4Eq1

Eq2
cq2

bq1
(b†

k1
eik1·x + ck1 e−ik1·x)

× (bk1 e−ik2·x + c†
k2

eik2·x)e−ip·x |0〉 .

From the fields ψ∗ and ψ, only the b† and c† terms give a nonzero contribution, and taking the appropriate
commutators gives us delta functions over the momenta (i.e. setting q1 = k1, q2 = k2). Using these delta
functions to compute the k1, k2 integrals we find that

〈 f | S |i〉 = −ig 〈0|
∫

d4xei(q1+q2−p)·x |0〉

= −ig[(2π)4δ4(q1 + q2 − p)],

where this delta function simply imposes overall 4-momentum conservation. Note that this is a “matrix
element,” and not a probability yet. To actually turn this into a measurable probability (e.g. for an

35That is, we write aka†
p |0〉 = (a†

pak + (2π)3δ3(k− p)) |0〉 = (2π)3δ3(k− p) |0〉 since ak kills the vacuum.
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experiment), we must take the mod squared and integrate over the possible outgoing momenta q1, q2– we’ll
discuss this more later.36

Wick’s theorem We’ll now discuss Wick’s theorem for a real scalar field. When we are working out S-matrix
elements for more than one interaction, we will often need to compute quantities like

〈 f | T{HI(x1) . . . HI(xn)} |i〉 ,

the amplitude of some time-ordered product– remember that Dyson says we ought to be evolving our states
in time with time-ordered products. Our lives would be easier if we could work in terms of normal-ordered
products instead, where the as are on the RHS and the a†s are on the LHS. This would let us easily see
which terms contribute to the final amplitude (e.g. which as precisely cancel particles created by a†s in the
initial state |i〉, and vice versa for the outgoing state | f 〉). In fact we can do this! Wick’s theorem relates
time-ordered products to normal-ordered products in a reasonably nice way.

Let’s compute a simple example first. For a real scalar field φ, what is the time-ordered product
T{φ(x)φ(y)}?

To do this computation, we write our scalar field as

φ(x) ≡ φ+(x) + φ−(x)

where

φ+(x) ≡
∫ d3 p

(2π)3
1√
2Ep

ape−ip·x

is the annihilation part of the field φ and

φ−(x) ≡
∫ d3 p

(2π)3
1√
2Ep

a†
pe+ip·x

is the creation part of φ.37 Now if we first consider the case x0 > y0, then T{φ(x)φ(y)} takes the form

T{φ(x)φ(y)} = φ(x)φ(y)

= (φ+(x) + φ−(x))(φ+(y) + φ−(y))

= φ+(x)φ+(y) + φ−(x)φ−(y) + φ−(y)φ+(x) + φ−(x)φ+(y) + [φ+(x), φ−(y)]

=: φ(x)φ(y) : +D(x− y)

where we’ve collected terms with all the φ+ terms to the right of the φ− terms into the normal-ordered
product : φ(x)φ(y) :. If we had y0 > x0 instead, we would get

T{φ(x)φ(y)} =: φ(x)φ(y) : +D(y− x).

Putting these together, we see that

T{φ(x)φ(y)} =: φ(x)φ(y) : +∆F(x− y), (9.5)

where ∆F is simply the Feynman propagator. It’s important to note that while the time-ordered and
normal-ordered products are both operators, their difference is ∆F, a c-function.

Definition 9.6. We define a contraction of a pair of fields in a string (denoted by a square bracket between
the two fields, or a curly overbrace here because of the limitations of my LATEX formatting) to mean replacing

the two contracted fields by their Feynman propagator. That is,
︷ ︸︸ ︷
φ(x)φ(y) ≡ ∆F(x− y).

For instance, we saw that

T{φ(x)φ(y)} =: φ(x)φ(y) : +
︷ ︸︸ ︷
φ(x)φ(y) .

Theorem 9.7 (Wick’s theorem). Time-ordered products of fields are related to normal-ordered products in the
following way:

T{φ(x1) . . . φ(xn)} =: φ(x1) . . . φ(xn) : + : all possible contractions : (9.8)

36See Lecture 13 and 14 if you’re impatient, or a would-be experimentalist. Or both.
37The signs here are an unfortunate convention having to do with these being “positive frequency” and “negative frequency”

operators.
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Note that “all possible contractions” here includes combinations of fields that are not fully con-
tracted. For instance, the product T{φ(x1)φ(x2)φ(x3)} will include terms like ∆F(x1 − x2)φ(x3). Si-
milarly T{φ(x1)φ(x2)φ(x3)φ(x4)} includes ∆F(x1 − x2) : φ(x3)φ(x4) : as well as the totally contracted
∆F(x1 − x2)∆F(x3 − x4).

Example 9.9. Since all normal ordered terms kill the vacuum state, Wick’s theorem allows us to immediately
compute amplitudes like

〈0| T{φ1 . . . φ4} |0〉 = ∆F(x1 − x2)∆F(x3 − x4) + ∆F(x1 − x3)∆F(x2 − x4) + ∆F(x1 − x4)∆F(x2 − x3).

The proof of Wick’s theorem is by induction. Suppose it holds for T{φ2 . . . φn}. Then (see textbooks for
detail)

T{φ1φ2 . . . φn} = (φ+
1 + φ−1 )(: φ2 . . . φn+ : all contractions of φ2 . . . φn :).

The φ−1 is okay where it is, while the φ+
1 must be commuted to the RHS of the φ2 . . . φn terms. Each

commutator past the xk term in φ2 . . . φn gives us a D(x1− xk), which is equivalent to a contraction between
φ1 and φk.

Wick’s theorem has some immediate consequences. For instance,

〈0| T{φ1 . . . φn} |0〉 = 0

if n is odd (since one φ is always left out of the contractions) and it is

∑
i1,...,in

∆F(xi1 − xi2)∆F(xi3 − xi4) . . . ∆F(xin−1 − xin)

if n is even, where the sum is taken over symmetric permutations of i1, . . . , in.
Note that Wick’s theorem also has a generalization to complex fields ψ ∈ C, e.g.

T(ψ(x)ψ∗(y)) =: ψ(x)ψ∗(y) : +∆F(x− y)

where the contraction of a ψ and ψ∗ is a propagator,
︷ ︸︸ ︷
ψ(x)ψ∗(y) ≡ ∆F(x− y), and the contractions of two

ψs or two ψ∗s is zero,
︷ ︸︸ ︷
ψ(x)ψ(y) =

︷ ︸︸ ︷
ψ(x)∗ψ∗(y) = 0.

Lecture 10.

Thursday, October 25, 2018

Last time, we computed the amplitude for meson decay to first order in g. Now let’s apply Wick’s
theorem to nucleon scattering, ψ(p1)ψ(p2)→ ψ(p′1)ψ(p′2). Our initial state looks like

|i〉 =
√

4Ep1 Ep2 b†
p1

bp2 |0〉 ≡ |p1, p2〉

and our final state is
| f 〉 =

√
4Ep′1

Ep′2
b†

p′1
bp′2
|0〉 ≡

∣∣p′1, p′2
〉

.

We aren’t interested in the trivial case where there’s no scattering (i.e. the zeroth order term where the
nucleons just go on their way without any interaction). Moreover, any single interaction O(g) would
produce a meson we don’t want in our final state, so there is no order g contribution. What we’re really
interested in is the O(g2) term in 〈 f | (S− 1) |i〉 .

The amplitude takes the form

(−ig)2

2!

∫
d4x1d4x2

〈
p′1, p′2

∣∣ T{ψ∗(x1)ψ(x1)φ(x1)ψ
∗(x2)ψ(x2)φ(x2)} |p1, p2〉 .

Using Wick’s theorem, we know there is a term of the form

: ψ∗(x1)ψ(x1)ψ
∗(x2)ψ(x2) :

︷ ︸︸ ︷
φ(x1)φ(x2)

in the time-ordered product. The contracted bit will make sure we have no issues with φ fields (since there
are no φs in our initial and final states), while the normal-ordered part gives us ψs to annihilate the initial
nucleons and ψ∗s to create the final nucleons. All other terms are zero.
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We will ignore all terms involving c, c† in the field expansions since they give zeroes (i.e. to this order,
we don’t need to worry about antiparticles). We ought to compute〈

p′1, p′2
∣∣ : ψ∗(x1)ψ(x1)ψ

∗(x2)ψ(x2) : |p1, p2〉 =
∫ d3q1 . . . d3q4

√
16Ep1 . . . Ep4

(2π)12
√

2Eq1 . . . 2Eq4

× 〈0| bp′1
bp′2

b†
q1

b†
q2︸ ︷︷ ︸

ψ∗s

bq3
bq4︸ ︷︷ ︸

ψs

b†
p1

b†
p2
|0〉

× ei(q1·x1+q2·x2−q3·x1−q2·x2).

Using commutation relations one can check (in a few lines) that this big mess of creation and annihilation
operators simplifies to a slightly more manageable mess of delta functions we can integrate over and get
rid of. That is,

〈0| bp′1
bp′2

b†
q1

b†
q2

bq3
bq4

b†
p1

b†
p2
|0〉 =

[
δ3(p′1 − q2)δ

3(p′2 − q1) + δ3(p′2 − q2)δ
3(p′1 − q1)

]
×
[
δ3(q4 − p1)δ

3(q3 − p2) + δ3(q4 − p2)δ
3(q3 − p1)

]
.

If we now integrate over this, our delta functions give us several exponential terms:〈
p′1, p′2

∣∣ : ψ∗(x1)ψ(x1)ψ
∗(x2)ψ(x2) : |p1, p2〉 =

[
ei(p′1·x2+p′2·x1) + ei(p′2·x2+p′1·x1)

]
×
[
e−i(p1·x2+p2·x1) + e−i(p2·x2+p1·x1)

]
.

Writing this all out, one can perform the x1, x2 integrals to get (surprise) even more delta functions. We
also integrate over the internal momentum k and find as our final result

(−ig)2
{

i
(p1 − p′1)

2 −m2 + iε
+

i
(p′2 − p1)2 −m2 + iε

}
(2π)4δ4(p1 + p2 − p′1 − p′2).

In fact, there are two terms here– one where the ψs exchange a meson and go on their ways, and one where
the ψs exchange a meson and then cross over (so that what we thought was the first nucleon was actually
the second). The meaning of this will be more obvious when we draw the Feynman diagrams, but we need
both terms in order to ensure that the particles obey Bose-Einstein statistics (i.e. are indistinguishable).
It should be clear that the delta function imposes conservation of overall momentum (i.e. the outgoing
momentum is equal to the ingoing momentum, p1 + p2 = p′1 + p′2).

Feynman diagrams This is basically the simplest interesting calculation we could have done, and using
Wick’s theorem to get there has given us a big mess. Surely there must be a better way, you say. And there
is. We draw Feynman diagrams to keep track of the different possible Wick contractions, i.e. to represent the
perturbative expansion of 〈 f | (S− 1) |i〉. We have a set of rules for how to draw the diagrams representing
different processes, and can associate integrals to the diagrams.

Here are the rules.
◦ Draw an external line for each particle in the initial and final states |i〉 , | f 〉 , assigning a four-

momentum to each.
◦ For C fields we ought to add an arrow to label the flow of charge. Choose an in(out)-going arrow

for (anti-)particles in |i〉, and the opposite convention holds for | f 〉.
◦ Join the lines together with vertices as prescribed by the Lagrangian, i.e. making sure that the

interaction has a corresponding term and that charge is conserved in each vertex.
◦ Assign a momentum k to each internal line i.
◦ Add a delta function corresponding to each vertex for momentum conservation, (−ig)(2π)4δ4(∑i ki),

where ∑i ki is the sum of all 4-momenta flowing into the vertex and g is the coupling constant in
the Lagrangian.
◦ For each internal line with a 4-momentum k, write a factor of the propagator for that particle, e.g.

in Yukawa theory, ∫ d4k
(2π)4 D(k2) where D(k2) =

{
i

k2−m2+iε for φ
i

k2−µ2+iε for ψ
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Using the Feynman rules, we can draw the two O(g2) diagrams and immediately write down the
amplitude for our nucleon scattering process: it is

〈 f | (S− 1) |i〉 = (−ig)2
∫ d4k

(2π)4
i

k2 −m2 + iε
(2π)8{δ4(p1 − p′1 − k)δ4(p2 − p′2 + k)

+ δ4(p1 − p′2 − k)δ4(p2 + k− p′1)}

= i(−ig)2
(

1
(p1 − p′1)

2 −m2 + iε
+

1
(p1 − p′2)−m2 + iε

)
(2π)4δ4(p1 + p2 − p′1 − p′2).

The diagrams are suggestive of an analogous classical scattering process, like billiard balls colliding
elastically. If we like, we can say that this is like the nucleons exchanging a meson of 4-momentum k.
However, note that this meson doesn’t necessarily satisfy the relativistic dispersion relation k2 = m2. If it
doesn’t, it’s called “off-shell” or a virtual particle, and the impact of virtual particle interactions is a purely
quantum effect.

Conversely, the external legs of our diagram are forced to be on-shell– because these are outgoing particles
(that one could really observe and measure in a detector, for example), they had better satisfy the relativistic
dispersion relation. It’s also important to recognize that while internal momenta are fixed by momentum
conservation in “tree-level” diagrams, once we introduce loops into our Feynman diagrams all bets are off
and we must integrate over all possible momenta for those virtual particles.

Lecture 11.

Saturday, October 27, 2018

Last time, we introduced the Feynman rules for drawing Feynman diagrams and computing scattering
amplitudes, and it’s good to check that these diagrams really do correspond to Wick contractions of our
fields. Let’s now make a canonical definition of the amplitude A f i, defined by

〈 f | (S− 1) |i〉 ≡ iA f i (2π)4δ4(∑
j∈ f

pj −∑
j∈i

pj)︸ ︷︷ ︸
from translational invariance

where the i is included by convention to match with non-relativistic QM.
We should then refine the Feynman rules to compute the amplitude (stripping away the overall

momentum-conserving delta function, since we will always get one). Here are our revised rules:
◦ Draw all possible diagrams with appropriate external legs given by |i〉 , | f 〉 .
◦ Impose 4-momentum conservation at each vertex.
◦ Write a factor of the coupling (−ig) at each vertex.
◦ For each internal line, add a factor of the propagator.
◦ Integrate over internal momenta

∫ d4k
(2π)4 . (This is trivial for tree-level diagrams since the momenta

are all fixed by momentum conservation, but these will be real integrals for diagrams with internal
loops.)

Example 11.1. Consider the scattering process ψ + ψ̄ → φ + φ in scalar Yukawa theory. There are two
diagrams for this, and both are of order (−ig)2. We can write down the amplitude almost by inspection:

iAi f = (−ig)2
[

i
(p1 − p′1)

2 − µ2 +
i

(p1 − p′2)
2 − µ2

]
Note we’ve dropped the iεs here since the denominators don’t vanish.

Example 11.2. We can now consider our first loop diagram, φφ→ φφ. It’s a O(g4) diagram, so we write
down the amplitude for this diagram as

iAi f = (−ig)4
∫ d4k

(2π)4
i

k2 − µ2 + iε
i

(k− p′2)
2 − µ2 + iε

i
(k + p′1 − p1)2 − µ2 + iε

i
(k + p′1)

2 − µ2 + iε
.

We won’t actually compute this integral, though we should note that at least it has a chance of converging
since it goes as d4k/k8. These loop integrals can be tricky, and we’ll revisit them in more detail next term in
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Advanced QFT. Sometimes the integrals won’t converge, and we’ll need the machinery of renormalization
to sweep away the infinities and get actual numbers out of our integrals.

Let’s now consider φ4 theory, with Hint =
λ
4! φ

4. Now we have a single interaction vertex– it’s a 4-point
vertex, where for each vertex we pay a cost of −iλ. The other Feynman rules are the same. Note that there’s
no 1/4! factor in the final amplitude. To see why, consider the simplest diagram for φφ→ φφ scattering.

iA f i ∼ −
iλ
4!
〈

p′1, p′2
∣∣ : φ(x)φ(x)φ(x)φ(x) : |p1, p2〉 .

Generically, this is

〈0| ap′1
ap′2

. . . a†
p1

a†
p2
|0〉

and so any one of the fields φ can annihilate or create the external particles. Therefore there are 4! ways
of matching up the operators and commuting them so that we start and end with |0〉 . You can get other
combinatoric factors like this (often 2 or 4). Having a term λnφn/n! in the Lagrangian is conventional,
though.

Let’s consider now
〈0| T{φ(x1) . . . φ(xm)S} |0〉 ,

which we call a correlation function. This is analogous to the correlation functions we saw in Statistical
Field Theory. It’s a more elementary but less physical object than an S-matrix element. For brevity, denote

φi ≡ φ(xi).

Now the nth term in the expansion for S gives

1
n!

(
−iλ
4!

)n ∫
d4y1 . . . d4yn 〈0| T{φ1 . . . φmφ4(y1) . . . φ4(yn)} |0〉 .

Wick’s theorem tells us to contract all pairs of fields in all possible ways. As an example, consider the case
n = 1, m = 4. Then we have a term

− iλ
4!

∫
d4x 〈0| T{φ1 . . . φ4φ4(x)} |0〉 .

We’re going to have to contract all the fields, since any uncontracted fields will kill the vacuum states after
normal ordering. We could get a contraction where all the numbered φ fields contract with the xs, e.g.

− iλ
4!

∫
d4x

︷ ︸︸ ︷
φ1φ(x)

︷ ︸︸ ︷
φ2φ(x)

︷ ︸︸ ︷
φ3φ(x)

︷ ︸︸ ︷
φ4φ(x)

and permutations of φ1, . . . , φ4. We could also contract two of the numbered φs,38

− iλ
4!

∫
d4x

︷︸︸︷
φ1φ2

︷ ︸︸ ︷
φ3φ(x)

︷ ︸︸ ︷
φ4φ(x)

︷ ︸︸ ︷
φ(x)φ(x)

and permutations of contracting 2 φis. Finally, we’ll have contractions of all the φis together, which look like

− iλ
4!

∫
d4x

︷︸︸︷
φ1φ2

︷︸︸︷
φ3φ4

︷ ︸︸ ︷
φ(x)φ(x)

︷ ︸︸ ︷
φ(x)φ(x) .

The first of these gives us 4! terms of Feynman propagators ∆F(xi − x) (4 choices for x1, 3 for x2, and so
on). There are 12 unique choices for which two fields φi, φj to contract with φ(x)s, and 12 ways of pairing
those fields φi, φj with φ(x)s (4 choices for φi and then 3 choices for φj). Finally, there are 3 ways of pairing
only φ(x)s (e.g. take φ1. We get 3 choices of φi 6=1 to pair it with, and the other contraction is then fixed).

So the first term gets −iλ, the second gets −iλ/2, and the last gets −iλ/8. Note that ∆F(x− x) = ∆F(0)
diverges, so these “bubble” diagrams will diverge badly. Our theory turns out to be renormalizable, but
again this isn’t always the case.

38This will give us a disconnected Feynman diagram.
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Lecture 12.

Tuesday, October 30, 2018

Last time, we introduced the correlation functions

〈0| T{φ(x1) . . . φ(xm)S} |0〉 .

Let’s consider the term with m = 4 and n = 2 (four numbered fields φi and two four-point vertices φ4).
That term looks like

1
2

(
−iλ
4!

)2 ∫
d4xd4y 〈0| T{φ1φ2φ3φ4φ4(x)φ4(y)} |0〉 .

As before, we claim that the most important contributions are the completely connected ones, and anything
not totally contracted will vanish in the time-ordered product. One such contraction is︷ ︸︸ ︷

φ1φ(x)
︷ ︸︸ ︷
φ2φ(x)

︷ ︸︸ ︷
φ3φ(y)

︷ ︸︸ ︷
φ4φ(y)

︷ ︸︸ ︷
φ(x)φ(y)

︷ ︸︸ ︷
φ(x)φ(y) .

But we could get some distinct diagrams depending on how we connect up the dots. The Feynman rules
for the first diagram give

(−iλ)2

2

∫
d4xd4y∆F(x1 − x)∆(x2 − x)∆F(x3 − y)∆F(x4 − y)∆2

F(x− y).

Let’s work out the combinatoric factors: there are four choices for which φ(x) goes with x1 and three
choices for which φ(x) goes with x2, for a factor of 12. The same is true for x3, x4 and y. We get a factor of
2 for which of the remaining φ(y)s the first φ(x) contracts with, and then the other is determined. We also
get a factor 2! from interchange of x and y. The four φ(x)s are identical, as are the four φ(y)s, so we should
add a factor of (1/4!)2 to take care of that. Finally, we have (4

2) = 1/2! choices of which φis to connect to
φ(x)s. Putting it all together we get

1
2!
×
(

1
4!

)2
× 12︸︷︷︸

x1,x2→x

× 12︸︷︷︸
x3,x4→y

× 2︸︷︷︸
x→y

× 2!︸︷︷︸
x↔y

=
1
2

.

The Feynman rules for the correlation functions of φ4 theory are then given by

〈0| T
{

φ(x1) . . . φ(xm) exp
(
− iλ

4!

∫
d4xφ4(x)

)}
|0〉 ,

which is equal to the sum of all diagrams with m external points and any number of internal vertices
connected by propagator lines. In perturbation theory, we categorize the diagrams based on the number of
powers of λ, i.e. the number of vertices in the diagram. For each diagram, there is one integral containing

◦ Each propagator from y to z, ∆F(y− z)
◦ Each vertex at x, −iλ

∫
d4x,

and we divide by a symmetry factor. Since the propagator is an integral over momentum space, it’s easier
to express the Feynman rules in momentum space. Rather than integrating over all space d4x we can
equivalently just integrate a momentum-conserving delta function. Let’s work out the momentum space
Feynman rules:

◦ To each propagator from x to y, assign eip·y to the y vertex (where the arrow is going out) and e−ip·x

to the vertex x with arrows in.
◦ Associate i

p2−m2+iε to the line itself (for a particle with mass m) and an integral over all momentum∫ d4 p
(2π)4 .

◦ Thus the integral at a vertex becomes∫
d4xe−ip1·x+ip2·x−ip3·x+ip4·x = (2π)4δ4(p1 + p3 − p2 − p4)

where p1, p3 are flowing into the vertex, p2, p4 out. (There should also be a −iλ for each vertex.)
However, as before the δ functions will make some of the momentum integrals trivial, and for each of

these the (2π)4 will cancel. We are left with the following momentum space rules:
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◦ For each internal line associate a factor of i
p2−m2+iε .

◦ For each vertex associate a factor of −iλ.
◦ Impose four-momentum conservation at vertices, and overall.
◦ Integrate over undetermined momenta from internal lines,

∫ d4k
(2π)4 .

◦ Divide by the appropriate symmetry factor.

Note that there isn’t really a nice way to get the symmetry factors from looking at the Feynman diagrams–
one must usually consider the Wick contraction to get these factors right.

Vacuum bubbles and connected diagrams What is the transition from the vacuum state to the vacuum
state, 〈0| S |0〉? In φ4 theory, we get a sum of “vacuum bubbles,” diagrams with no external lines. One should
check (e.g. on the second example sheet) that the S-matrix element is simply the exponential of the various
topologically distinct vacuum bubble diagrams. Weird!

In general we call the correlation function

〈0| T{φ(x1) . . . φ(xm)S} |0〉

an m-point function, and its value is the sum over diagrams with m external points. A typical diagram has
some vacuum bubbles, e.g. at second order in φ4 we have a disconnected diagram which looks like a line
with a loop and the figure 8. Remarkably, the vacuum bubbles add to the same exponential as in the pure
vacuum case. We’ll discuss this more in detail next term, but there is an apparently sensible way of treating
the vacuum bubbles.39 Therefore we may write

〈0| T{φ(x1) . . . φ(xm)S} |0〉 = (∑ connected diagrams)× 〈0| S |0〉 ,

where connected means that every point in the diagram is connected to at least one external line.
Really, the issue here comes from the fact that the vacuum of the free theory is not the vacuum of the

interacting theory.

Definition 12.1. Let |Ω〉 be the vacuum of the interacting theory, normalized such that H |Ω〉 = 0 with
H = H0 + Hint (n.b. H0 |0〉 = 0) and 〈Ω| Ω〉 = 1. Then we define

G(n)(x1 . . . xn) ≡ 〈Ω| T{φH(x1) . . . φH(xn)} |Ω〉 .

We call these Green’s functions.

We claim now that

〈Ω| T{φ1,H . . . φm,H} |Ω〉 =
〈0| T{φ1,I . . . φm,IS} |0〉

〈0| S |0〉 .

What this means is that the Green’s functions are precisely given by the sum of connected diagrams with
m external points– we need not worry too much about the vacuum bubbles and disconnected diagrams
because removing the vacuum bubbles gets the behavior relative to the interacting vacuum right (and S
evolves our interaction picture fields to Heisenberg picture fields). We’ll do the proof next time.

Lecture 13.

Thursday, November 1, 2018

Last time, we claimed that

〈Ω| T{φ1,H . . . φm,H} |Ω〉 =
〈0| T{φ1,I . . . φm,IS} |0〉

〈0| S |0〉 .

That is, it suffices to consider only connected diagrams, since the vacuum bubbles add up to a multiplicative
factor (namely, the vacuum energy) that can be factored out of the overall correlation function.

39I believe this is related to renormalization.
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Proof. To prove this, let us expand the numerator on the RHS as

〈0|U(∞, t1)φ1,IU(t1, t2)φ2,I . . . U(tn−1, tn)φn,IU(tn,−∞) |0〉 ,

and WLOG we label the fields to already be time-ordered, with x0
1 > x0

2 > . . . > x0
m. That is, we’ve split up

the overall time evolution operator S = limt→∞,t0→−∞ U(t, t0) into intervals from ti = x0
i to ti+1 = x0

i+1 in
order to write out the time ordering. We can then break up the time evolution operators as

U(t1, t2) = U(t1, 0)U(0, t2)

so that the numerator becomes

〈0|U(∞, 0) [U(0, t1)φ1,IU(t1, 0)]︸ ︷︷ ︸
φ1,H

[U(0, t2)φ2,IU(t2, 0)] . . . U(tn−1, 0)[U(0, tn)φn,IU(tn, 0)]U(0,−∞) |0〉 ,

or more compactly,
〈0|U(∞, 0)φ1,H . . . φn,HU(0,−∞) |0〉 , (13.1)

which is nothing more than a bunch of Heisenberg picture operators sandwiched between the vacuum
states and a pair of time evolution operators.

Lemma 13.2. For a general state |ψ〉,
lim

t0→−∞
〈ψ|U(0, t0) |0〉 = 〈ψ| Ω〉 〈Ω| 0〉 . (13.3)

Proof. First, note that
〈ψ|U(0, t0) |0〉 = 〈ψ| eiHt0 |0〉

since U(0, t0) = eiHt0 e−iH0t0 and H0 |0〉 = 0. Insert a complete set of interacting states |p1, . . . , pn〉. Then

lim
t0→−∞

〈ψ|U(0, t0) |0〉 = lim
t0→−∞

〈ψ| eiHt0

[
|Ω〉 〈Ω|+

∞

∑
n=1

∫ n

∏
j=1

d3 pj

2Epj(2π)3 |p1, . . . , pn〉 〈p1, . . . , pn|
]
|0〉

= 〈ψ| Ω〉 〈Ω| 0〉

+ lim
t0→−∞

∞

∑
n=1

∫ n

∏
j=1

d3 pj

2Epj(2π)3 ei ∑n
k=1 Epk t0 〈ψ| p1, . . . , pn〉 〈p1, . . . , pn| 0〉 .

Note that in the first term 〈ψ| eiHt0 |Ω〉 〈Ω| 0〉 , all nonzero powers of H from the exponential will kill
the (interacting) vacuum state |Ω〉 by definition, so the only thing that survives is the zeroth order term,
〈ψ| Ω〉 〈Ω| 0〉 . Luckily, the second term vanishes due to the Riemann-Lebesgue lemma: stated roughly,
“for reasonable f (x) (i.e. square-integrable), limµ→∞

∫ b
a f (x)eiµxdx = 0.” With this second term gone, we

conclude that
lim

t0→−∞
〈ψ|U(0, t0) |0〉 = 〈ψ| Ω〉 〈Ω| 0〉 . �

By the same reasoning,
lim

t0→∞
〈0|U(t0, 0) |ψ〉 = 〈0| Ω〉 〈Ω| ψ〉 . (13.4)

Now we can apply our lemma so that our numerator (Eqn. 13.1) becomes

〈0|U(∞, 0)φ1,H . . . φn,HU(0,−∞) |0〉 = 〈Ω| φ1,H . . . φm,H |Ω〉 〈Ω| 0〉 〈0| Ω〉 (13.5)

and the denominator is just 〈0| Ω〉 〈Ω| 0〉.40 Therefore

〈0| T{φ1,I . . . φm,IS]} |0〉
〈0| S |0〉 =

〈Ω| φ1,H . . . φm,H |Ω〉 〈Ω| 0〉 〈0| Ω〉
〈Ω| 0〉 〈0| Ω〉 = 〈Ω| T{φ1,H . . . φm,H} |Ω〉 ,

as promised. Note we have put time ordering back in since we explicitly time-ordered the fields when we
expanded out S. This completes the proof. �

40It’s literally the same calculation– just take out the fields φ. Then the first factor is just 〈Ω| Ω〉 = 1 by normalization of the
interacting theory vacuum states and we’re left with 〈Ω| 0〉 〈0| Ω〉 .
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In words, this tells us that we can do our calculations relative to the vacuum of the interacting theory
|Ω〉 rather than the vacuum of the free theory |0〉, which means (in terms of our perturbative expansion)
that we need not consider vacuum bubbles when we compute our correlation functions.

Going back to our previous example, we say that to describe scattering in the interacting theory, our
external states, e.g. |p1, p2〉, should come from the interacting theory. This means that we exclude loops on
the external lines (a process we call “amputation”).

Mandelstam variables In two-particle scattering processes, the same combinations of p1, p2, p′1, p′2 (ingoing
and outgoing four-momenta) often appear, so it’s useful to introduce the Mandelstam variables s, t, and u,
defined as

s = (p1 + p2)
2 = (p′1 + p′2)

2

t = (p1 − p′1)
2 = (p2 − p′2)

2

u = (p1 − p′2)
2 = (p2 − p′1)

2

where the squared here indicates a four-vector product (e.g. (p1 + p2)
2 = (pµ

1 + pµ
2 )(p1µ + p2µ).

Exercise 13.6. Show that the sum of the Mandelstam variables is

s + t + u = m2
1 + m2

2 + m′1
2
+ m′2

2,

where m1, m2, m′1, m′2 are the masses of the initial and final particles, so the Mandelstam variables are not
all independent.

WLOG, we can consider the initial particles in the center-of-mass frame, i.e. a frame in which the net
3-momentum is zero. Thus p1 = −p2. In this frame, s takes the simple form

s = (p1 + p2)
2 = (E1 + E2)

2.

Since s is a Lorentz scalar, it takes the same value in all frames. Therefore
√

s is the center of mass energy,
e.g. at the LHC we say that

√
s = 13 TeV. In particular if m1 = m2, then by symmetry E1 = E2 =

√
s/2.

Cross sections and decay rates So far, |i〉 and | f 〉 have been states of definite momenta. What happens in
a realistic situation where our ingoing states are now some distribution (a density function) smeared over
momenta?

To understand this, suppose we have a collision with 2→ n scattering, i.e. we have two particles ingoing
with momenta p1, p2 and n outgoing particles with momenta q1, . . . , qn. Then the scattering amplitude is
proportional to

〈q1q2 . . . qn| p1 p2〉 (2π)4δ4(p1 + p2 −
n

∑
i=1

qi).

But probabilities are related to the amplitude squared, so it seems as if we’ve picked up an extra delta
function in computing the physical probability of this interaction. The resolution is this– in reality, |i〉 , | f 〉
are very sharply peaked superpositions of momentum eigenstates. That is, our ingoing states take the form

|p1 p2〉in =
∫ d3 p̃1

(2π)32Ep̃1

d3 p̃2

(2π)32Ep̃2

f1( p̃1) f2( p̃2) | p̃1 p̃2〉 ,

where | p̃1 p̃2〉 are the real four-momentum eigenstates.
If we suppose that the outgoing particles are also pure momentum eigenstates, then then our delta

functions are soaked up by integrals when we try to compute the transition probability W. We then have

W = (2π)8
∫ d3 p̃1

(2π)32Ep̃1

d3 p̃2

(2π)32Ep̃2

d3 p′1
(2π)32Ep′1

d3 p′2
(2π)32Ep′2

×
{
|M|2 f1( p̃1) f ∗1 (p′1) f2( p̃2) f ∗2 (p′2)δ

4(∑
i

qi − p̃1 − p̃2)δ
4(∑ qi − p′1 − p′2)

}
.

Note that what we have written as the square of the matrix element here is really

|M|2 = 〈q1 . . . qn| p̃1 p̃2〉
〈

p′1 p′2
∣∣ q1 . . . qn

〉
.
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We’ll clean this up later to write everything in terms of the physical values p and q rather than dummy
variables p′, p̃.

This expression for W is the transition probability for 2→ n scattering to states of definite momentum
q1 . . . qn. We can expand one of the delta functions in Fourier space to write

W =
∫

d4x
∫ d3 p̃1

(2π)32Ep̃1

f1( p̃1)ei p̃1·x d3 p̃2

(2π)32Ep̃2

f2( p̃2)ei p̃2·x

×
d3 p′1

(2π)32Ep′1

f ∗1 (p′1)e
ip′1·x

d3 p′2
(2π)32Ep′2

f ∗2 (p′2)e
ip′2·x

× δ4(∑
i

qi − p′1 − p′2).

Using the normalization we define the Fourier transform of the wavepacket,

|ψi〉 ≡
∫ d3 p

(2π)3
√

2Ep
fi(p)e−ip·x |p〉 .

What we’ve called the matrix element |M|2 is still a function of p̃1, p̃2, p′1, p′2, qi, but one can use the notion
of sharp peaks (i.e. in our distributions fi) to approximate |M2| by its value where p̃i = p′i = pi. That is, our
momentum distributions fi are localized around some values pi, so they behave similarly to delta functions
and we can set all the dummy variables to the physical momenta p1, p2. Then the transition probability
becomes

W =
∫

d4x
|ψ1(x)|2

2E1

|ψ2(x)|2
2E2

(2π)4δ4(∑
i

qi − p1 − p2)|M|2,

which means that the wavepacket in position space has some corresponding spread– like momentum, it is
localized and not a single value. The total transition probability is a function of the spread in momentum
fi(p) as well as the momenta themselves, |M|2. Thus

dW
d4x

=
|ψ1(x)|2

2E1

|ψ2(x)|2
2E2

(2π)4δ4(∑
i

qi − p1 − p2)|M|2,

where |M|2 is now the actual matrix element | 〈q1 . . . qn| p1 p2〉 |2. We’ll complete this discussion next time.

Lecture 14.

Saturday, November 3, 2018

After today’s lecture, we’ll be able to solve all the problems on Example Sheet 2 (in principle). Remark:
on question 10b on sheet 2, the answer is incorrect. It should read “Find dσ

dt in terms of g, s, t, m, and M.”
Note that the matrix elementM and the amplitude A fi

are the same thing (e.g. in Prof. Allanach’s notes).
Whew.

Okay, moving on. Last time we wrote down

dW
d4x

=
|ψ1(x)|2

2E1

|ψ2(x)|2
2E2

(2π)4δ4(∑
i

qi − p1 − p2)|M|2,

which is the transition probability density per unit time. It depends (perhaps very weakly) on x. Here’s the
picture we should imagine– we have a “beam” of particle 2, described in space by a wavefunction |ψ2(x)|2
and moving with velocity v. Thus the flux of particle 2 per unit area is φ = v|ψ2(x)|2. In the rest frame of
particle 1, we have a density of particle 1 ρ = |ψ1(x)|2, and it has some effective cross-sectional area dσ.
Therefore we can rewrite this probability density as

dW
d4x

= dσ · φ · ρ.

Equivalently we write the differential cross section as

dσ =
(2π)4δ4(p1 + p2 −∑i qi)

F |M|2
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where F = 4E1E2v is the “flux factor.” Thus dσ is the effective cross-sectional area to scatter into final
states of momenta {qi}. If we now boost to the rest frame of particle 2, in this frame the four-momenta take
the form

pµ
2 = (m2, 0), pµ

1 = (
√

m2
1 + |p1|2, p1).

The relative velocity v = |p1|/E1, so in this frame the flux factor takes the form

F = 4E1|p1| = 4m2

√
E2

1 −m2
1 = 4

√
(p1 · p2)2 −m2

1m2
2,

where we have used the fact that in this frame p1 · p2 = E1m2. This is the correct Lorentz invariant definition
of the flux factor.

In the massless limit, m1, m2 � E1, E2. This is the case for high-energy colliders like the LHC (
√

s =
13 TeV, while mp ∼ 1 GeV). In this limit, we therefore have

F = 4
√
(p1 · p2)2 −m2

1m2
2 ≈ 4(p1 · p2) ≈ 2(m2

1 + 2p1 · p2 + m2
2) = 2(p1 + p2)

2,

where we have added on and neglected mass terms rather freely in the limit where the masses are small
compared to the p1 · p2 term which is proportional to the energy E1.

Then F ∼ 2s where s = (p1 + p2)
2. To compute the total cross-section, we then sum over the {qi} in the

correct manner to get

σ =
∫ n

∏
i=1

(
d3qi

(2π)32Eqi

)
|M|2
F (2π)4δ4(p1 + p2 −

n

∑
i=1

qi).

We call the integrals over d3qi “phase space integrals.”

2→ 2 scattering Let us specialize in the case of 2 to 2 scattering. What is the behavior of the differential
cross-section, e.g. in terms of the Mandelstam variables? Let’s look at the variations of σ with respect to

t = (p1 − q1)
2 = m2

1 + m′1
2 − 2Ep1 Eq1 + 2p1 · q1.

Notice that
dt

d cos θ
= 2|p1||q1|,

where cos θ is the angle between p1 and q1. But θ is a frame-dependent quantity, so we must be a little
careful what frame we’re working in. Let us instead write the integration measure

d3q2

2Eq2

= d4q2δ(q2
2 −m′2

2
)θ(q0

2)

with θ the step function. We proved this way back in Lecture 5, in a somewhat different form. What we
wrote then was

d3q2

2Eq2

= d4q2δ((q0
2)

2 − q2
2 −m′2

2
)|q0

2>0.

But this is clearly equivalent– just turn the q0
2 condition into a step function and rewrite (q0

2)
2 − q2

2 in terms
of the four-momentum q2

2. We then rewrite the d3q1 integral in spherical coordinates for q1:

d3q1

2Eq1

=
|q1|2d|q1|

2Eq1

d cos θdφ.

Since E2
q1
+ m2

1 = m′1
2 + |q1|2 =⇒ 2Eq1 dEq1 = |q1|d|q1| allows us to rewrite our expression for d3q1

2Eq1
(using

the dt/d cos θ expression) as
d3q1

2Eq1

=
1

4|p1|
dEq1 dφdt.

If we explicitly substitute our expressions for d3q1/2Eq1 and d3q2/2Eq2 into the expression for σ, we get

σ =
∫ 1

(2π)2

(
1

4|p1|
dEq1 dφdt

)(
d4q2δ(q2

2 −m′2
2
)θ(q0

2)
) |M|2
F δ4(p1 + p2 − (q1 + q2)).
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The φ integral is trivial– it cancels a factor of 2π. The q2 integral is also trivial by the last delta function–
since it just sets q2 = q1 − p1 − p2. (All the step function tells us is that the energy of the final state is
non-negative.) We now take the derivative d/dt of both sides to get an expression for dσ/dt:

dσ

dt
=

1
8πF|p1|

∫
dEq1 |M|

2δ((q1 −
√

s)2 −m′2
2
).

Expanding out the square we find that

(q1 −
√

s)2 −m′2
2
= q2

1 − 2q1 · (p1 + p2) + s−m′2
2,

so our final expression is

dσ

dt
=

1
8πF|p1|

∫
dEq1 |M|

2δ(s−m′2
2
+ m′1

2 − 2q1 · (p1 + p2)).

Boosting now to the center of mass frame where pµ
1 = (

√
|p1|2 + m2

1, p1) and pµ
2 = (

√
|p1|2 + m2

2,−p1),
we note that s is some constant of the collision,

s =
(√
|p1|2 + m2

1 +
√
|p1|2 + m2

2

)2
.

We can solve for |p1| as an exercise (see the end of this section) to find

|p1| =
λ1/2(s, m2

1, m2
2)

2
√

s

where
λ(x, y, z) ≡ x2 + y2 + z2 − 2xy− 2xz− 2yz.

We therefore find that
F = 2λ1/2(s, m2

1, m2
2).

With our expressions for |p1| and F firmly in hand, we can plug them back into our expression for dσ/dt,
we get

dσ

dt
=

|M|2

16πλ(s, m2
1, m2

2)(1/2
√

s)

∫
dEq1 δ(s−m′2

2
+ m′1

2 − 2q1 · (p1 + p2)).

Since we are in the center-of-mass frame, p1 + p2 = (m1 + m2, 0, 0, 0) = (
√

s, 0, 0, 0), and so

dσ

dt
=

|M|2

16πλ(s, m2
1, m2

2)(1/2
√

s)

∫
dEq1 δ(s−m′2

2
+ m′1

2 − 2Eq1

√
s)

=
|M|2

16πλ(s, m2
1, m2

2)(1/2
√

s)

∫
dẼq1

1
2
√

s
δ(s−m′2

2
+ m′1

2 − Ẽq1)

=
|M|2

16πλ(s, m2
1, m2

2)
.

In the massless limit (a common approximation) we have t = (p1 − q1)
2 − 2p1 · q1 = −2|p1||q1|(1− cos θ),

and the total cross section is

σtot =
∫ 0

−4|p1||q1|
dt

dσ

dt
.

In the center-of-mass frame |p1| = |q1| =
√

s/2 so dt
d cos θ = s

2 . Defining the differential solid angle
element dΩ by

dΩ ≡ d cos θdφ

(a frame-dependent quantity) we find that

dσ

dΩ
=

s
4π

dσ

dt
=
|M|2

64π2s
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for particles with masses much less than the collision energy.41

We can also consider decay rates, which we treat much the same way. Take the initial state to be a
sharply peaked superposition of momentum-space eigenstates. Our transition probability density is

dW
d4x

=
|ψ(x)|2

2Ep
|M|2(2π)4δ4(p−∑

i
qi),

where ψ(x) is the space-time wavefunction of the decaying particle. dW/dx is then the chance of finding
the decaying particle per unit volume. We can equivalently define the differential decay rate dΓ such that

dW
d4x

= |ψ(x)|2 × dΓ.

Thus

Γ =
1

2Ep

∫ n

∏
i=1

(
d3qi

(2π)32Eqi

)
|M|2(2π)4δ4(p−

n

∑
i=1

qi).

Note that Γ is not Lorentz invariant, as it goes as 1/E of the decaying particle. The standard convention is
to define Γ in the rest frame of the decaying particle. The lifetime of a particle is given by

τ = 6.58× 10−25 seconds× 1 GeV
Γ

.

To link this back to our previous discussion of nucleon scattering, ψψ→ ψψ, we computed two diagrams
for this process. We found that the matrix element was

iM = (−ig)2
{

1
t−m2 +

1
u−m2

}
,

with t and u the standard Mandelstam variables.

Non-lectured aside– solving for |p1| We have

s =
(√
|p1|2 + m2

1 +
√
|p1|2 + m2

2

)2
.

To solve for |p1|, let us expand out

s = (|p1|2 + m2
1) + (|p1|2 + m2

2) + 2
√
(|p1|2 + m2

1)(|p1|2 + m2
2).

We move all the terms outside the square root to the LHS to get

s− 2|p1|2 −m2
1 −m2

2
2

=
√
(|p1|2 + m2

1)(|p1|2 + m2
2)

and square again to get rid of all the square roots. We can then expand the left side in a useful way, writing

(s−m2
1 −m2

2)
2

4
+ |p1|4 − |p1|2(s−m2

1 −m2
2) = (|p1|2 + m2

1)(|p1|2 + m2
2)

or equivalently

(s−m2
1 −m2

2)
2

4
+ |p1|4 − |p1|2(s−m2

1 −m2
2) = |p1|4 + (m2

1 + m2
2)|p1|2 + m2

1m2
2.

The |p1|4 terms cancel, as do the (m2
1m2

2)|p1|2s, so we are left with

s|p1|2 =
(s−m2

1 −m2
2)

2

4
−m2

1m2
2.

A little rearranging yields

|p1|2 =
(s−m2

1 −m2
2)

2 − 4m2
1m2

2
4s

=
λ(s, m2

1, m2
2)

4s
. �

41Solid angle is the generalization of angles in the plane. A normal angle measured in radians corresponds to an arc length
subtended by that angle on a circle of unit radius. In the same way, solid angle (measured in steradians) can be thought of as a surface
area on a 2-sphere of unit radius, so that the total solid angle for a sphere is 4π.
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Now we want to solve for F . Note that

2p1 · p2 = (p1 + p2)
2 −m2

1 −m2
2 = s−m2

1 −m2
2.

Then we can get F by writing

F = 4
√
(p1 · p2)2 −m2

1m2
2

= 2
√
(2p1 · p2)2 − 4m2

1m2
2

= 2
√
(s−m2

1 −m2
2)

2 − 4m2
1m2

2

= 2λ1/2,

where we have recognized λ from the first calculation for |p1|. �

Lecture 15.

Tuesday, November 6, 2018

Today, we’ll introduce spinors, the mathematical framework describing the behavior of fermions! We’ll
start to show explicitly why spin 1/2 is different than spin 0.42

Now, so far we’ve only considered scalar fields φ. Under a Lorentz transformation, these transform as

xµ → x′µ = Λµ
νxν

φ(x)→ φ′(x) = φ(Λ−1x).

Most particles have an intrinsic angular momentum, which we call spin, and fields with spin have a
non-trivial Lorentz transformation. For instance, spin 1 particles (i.e. vector fields) come with an index µ
and transform as

Aµ(x)→ Aµ ′(x) = Λµ
ν Aν(Λ−1x).

In general fields can transform as φa → Da
b(Λ)φb(Λ−1x), where we say the Da

b form a representation
of the Lorentz group. These might be familiar from Symmetries, Fields and Particles, but to give a quick
overview, a representation D of a group g is a map from that group to a space of linear transformations
(usually taken to be matrices) which preserves the group multiplication. That is, it satisfies

D(Λ1Λ2) = D(Λ1)D(Λ2)

D(Λ−1) = (D(Λ))−1

D(I) = I.

To find the representations, we look at the Lorentz algebra by considering infinitesimal Lorentz transforma-
tions. If we write

Λµ
ν = δ

µ
ν + εωµ

ν + O(ε2),

then the property that Λ preserves the inner product on four-vectors implies that ωµν is a 4× 4 antisymme-
tric matrix. In particular this means it has 4×3

2 = 6 independent components, corresponding to the three
rotations and three Lorentz boosts.

We may introduce a basis of six 4× 4 matrices, which we will label by four indices

(Mρσ)µν = ηρµησν − ησµηρν,

where these matrices are antisymmetric in ρ, σ and in µ, ν. We take ρ, σ to specify which matrix we are
looking at. Lowering the index ν, we take µ, ν to specify the row and column respectively. Therefore

(Mρσ)µ
ν = ηρµδσ

ν − ησµδρ
ν.

42It’s pretty cool to learn about this in Cambridge, where Dirac actually discovered the behavior of spin 1/2 particles.
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Example 15.1. The basis vector (M01)µ
ν is given by

(M01)µ
ν =


0 +1 0 0
+1 0 0 0
0 0 0 0
0 0 0 0

 .

This generates a boost in the x1 direction (it mixes up x1 and t).
Similarly, the basis vector (M12)µ

ν takes the form

(M12)µ
ν =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

This generates rotations in the (x1 − x2) plane.

Note that when we lower ν in order to write the generators as matrices, the matrix may not explicitly
look antisymmetric! We can now write

ωµν =
1
2
(Ωρσ Mρσ)µ

ν

where these Ms are the generators of the group of Lorentz transformations and Ω is some set of antisym-
metric parameters.

Definition 15.2. The Lorentz algebra is a set of relations between matrices M defined by the bracket

[Mρσ, Mτν] = ηστ Mρν − ηρτ Mσν + ηρν Mστ − ησν Mρτ .

The spinor representation means that we search for other matrices satisfying the Lorentz algebra.

Definition 15.3. We define the Clifford algebra (in any number of dimensions we like, though four is the
most useful for our purposes) as a set of matrices γµ such that

{γµ, γν} = 2ηµν I,

where we have defined the anticommutator {γµ, γν} ≡ γµγν + γνγµ. In four dimensions, the γµ are a set
of 4× 4 matrices with µ = 0, 1, 2, 3.

We need to find 4 matrices which anticommute, and such that (γi)2 = −I∀i ∈ {1, 2, 3} and (γ0)2 = I.
The simplest representation is in terms of 4× 4 matrices. A common choice is the chiral or Weyl representaion,
where we take

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 σi

−σi 0

)
,

where the σi are the usual 2× 2 Pauli matrices. As a quick refresher, the Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

They satisfy the commutation and anticommutation relations

[σi, σj] = 2ieijkσk and {σi, σj} = 2δij I2.

Note that the γ matrices under any similarity transformation UγµU−1 (where U is an invertible constant
matrix) also forms an equally good basis.

We now define
Sρσ ≡ 1

4
[γρ, γσ] =

1
2

γργσ − 1
2

ηρσ

by the Clifford algebra. We’ll make the following claims: first,

[Sµν, γρ] = γµηνρ − γνηρµ.

Second, using the previous claim and the definition of S, we can prove (e.g. on the example sheet) that S
satisfies the commutation relation

[Sρσ, Sτν] = ηστSρν − ηρτSσν + ηρνSστ − ησνSρτ .
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But this is precisely the relations that the Lorentz group generators satisfy, and so S provides a representation
of the Lorentz algebra.43

We now introduce a four-component Dirac spinor ψα(x), α ∈ {1, 2, 3, 4}. The spinor then transforms
under Lorentz transformations as

ψα(x)→ S[Λ]αβψβ(Λ−1x).
Here,

S[Λ] = exp
(

1
2

ΩρσSρσ

)
and Λ = exp

(
1
2

Ωρσ Mρσ

)
are both 4× 4 matrices.

Is the spinor representation equivalent to the usual vector representation? No– one can look at specific
Lorentz transformations to see this. For instance, the rotations i, j ∈ {1, 2, 3} give

Sij =
1
4

[
γi, γj

]
=

[(
0 σi

−σi 0

)
,
(

0 σj

−σj 0

)]
=
−i
2

εijk
(

σk 0
0 σk

)
.

If we write Ωij = −εijkφk, where φk is a vector specifying a rotation axis, e.g. Ω12 = −φ3. Then

S[Λ] = exp
(

1
2

ΩρσSρσ

)
=

(
eiφ·σ/2 0

0 eiφ·σ/2

)
.

Therefore a rotation about the x3 axis can be written as φ = (0, 0, 2π), and then

S[Λ] =

(
eiσ3π 0

0 eiσ3π

)
. = −I4.

Therefore a rotation of 2π takes ψα(x)→ −ψα(x). This is different from the vector representation, where

Λ = exp
(

1
2

Ωρσ Mρσ

)
= exp


0 0 0 0
0 0 2π 0
0 −2π 0 0
0 0 0 0

 = I4,

as expected. So indeed spinors see the full SU(2) rotational symmetry, and not just the SO(3) symmetry of
the ordinary Lorentz group.

What about boosts? Let us take

S0i =
1
2

(
−σi 0

0 σi

)
and write our boost parameter Ω0i = −Ωi0 ≡ χi. Then

S[Λ] =

(
e−χ·σ/2 0

0 e−χ·σ/2

)
.

For rotations, S[Λ] is unitary since S[Λ]S[Λ]† = I, but for boosts this is not the case.
It turns out there are no finite-dimensional unitary representations of the Lorentz group: this is because

the matrices

S[Λ] = exp
[

1
2

ΩρσSρσ

]
are only unitary if the Sµν are anti-hermitian, (Sµν)† = −Sµν. But

(Sµν)† = −1
4
[γµ†, γν†]

43At this point, Professor Allanach made a slight digression to read from an interview with Dirac conducted by an USAmerican
journalist. It’s entertaining reading and can be found here: http://sites.math.rutgers.edu/~greenfie/mill_courses/math421/
int.html

http://sites.math.rutgers.edu/~greenfie/mill_courses/math421/int.html
http://sites.math.rutgers.edu/~greenfie/mill_courses/math421/int.html


48 Quantum Field Theory Lecture Notes

can be anti-hermitian if all the γµs are either all hermitian or all anti-hermitian. However, this can’t
be arranged, since γ0)2 = I =⇒ γ0 has real eigenvalues (and cannot be anti-hermitian), whereas
(γi)2 = −I =⇒ γi has purely imaginary eigenvalues, and therefore cannot be hermitian.

Lecture 16.

Thursday, November 8, 2018

Today we will construct a LI action of spinor fields. Suppose we have a complex field ψ, with

ψ†(x) = (ψ∗)T(x).

Is ψ†(x)ψ(x) a Lorentz scalar? We’ll check how it transforms. In general we have

ψ†(x)ψ(x)→ ψ†(Λ−1x) S[Λ]†S[Λ]︸ ︷︷ ︸
6=1

ψ(Λ−1x), (16.1)

which is not quite what we want, since S is not unitary. Since γ0 = (γ0)† is hermitian and γi = −(γi)† is
antihermitian in our representation, we have

γ0γµγ0 = (γµ)† =⇒ (Sµν)† = −1
4
[γµ†, γν†] = −γ0Sµνγ0. (16.2)

(Note that Greek indices run from 0 to 3 here, while Latin indices are 1, 2, 3. As they should.)
Thus

S[Λ]† = exp(
1
2

Ωµν(Sµν)†) = γ0S[Λ]−1γ0,

which we get by using (γ0)2 = 1 repeatedly.

Definition 16.3. With this in mind, we define a Dirac adjoint of ψ:

ψ̄(x) ≡ ψ†(x)γ0.

We now claim that ψ̄(x)ψ(x) is a Lorentz scalar. Writing explicitly,

ψ̄(x)ψ(x) = ψ†(x)γ0ψ(x)

→ ψ†(Λ−1x)S[Λ]†γ0S[Λ]ψ(Λ−1(x)

= ψ†(Λ−1x)γ0ψ(Λ−1(x)

= ψ̄(Λ−1x)ψ(Λ−1x). �

Moreover, we claim that ψ̄(x)γµψ(x) is a Lorentz vector. Under a Lorentz transformation, it transforms
as

ψ̄(Λ−1x)S[Λ]†γµS[Λ]ψ(Λ−1(x).
If this is to be a Lorentz vector, we must have

S[Λ]−1γµS[Λ] = Λµ
ν γν.

Now we know that

Λµ
ν = exp

(
1
2

Ωρσ Mρσ

)µ

ν

and

S[Λ] = exp
(

1
2

ΩρσSρσ

)
,

so infinitesimally we have
(Mρσ)

µ
ν γν = −[Sρσ, γµ].

But from the definition of M, we have on the LHS

(ηρµδσ
ν − ησµδ

ρ
ν)γ

ν = ηρµγσ − γρησµ = −[Sρσ, γµ],

which we proved previously.



16. Thursday, November 8, 2018 49

Now we’ll claim that

S =
∫

d4x ψ̄(x)(iγµ∂µ −m)ψ(x)︸ ︷︷ ︸
LD

is a LI action, where LD is the Dirac Lagrangian. This action describes a free spinor field, and it has some
strange properties. If we look at the mass dimension of the field with [m] = 1, we find that [ψ] = [ψ̄] = 3

2 .
We can now vary ψ, ψ̄ independently to get the equations of motion. Varying ψ, we find that

(iγµ∂µ −m)ψ = 0,

which is known as the Dirac equation. Note that this equation is only first-order in ∂µ, whereas the scalar
field yielded a second-order equation in ∂µ. One arrives at a similar equation of ψ̄ after an integration by
parts:

i∂µγµψ̄ + mψ̄ = 0.

Let us now introduce the slash notation:

Aµγµ = γµ Aµ ≡ /A.

Hence the Dirac equation is written
(i/∂ −m)ψ = 0.

Note that the Dirac equation mixes up different components of ψ, but each individual component solves
the Klein-Gordon equation:

(i/∂ + m)(i/∂ −m)ψ = 0 =⇒ −(γµγν∂µ∂ν + m2)ψ = 0

⇐⇒ −(1
2
{γµ, γν}∂µ∂ν + m2)ψ = 0

⇐⇒ −(∂µ∂µ + m2)ψ = 0.

Remember, we should think of the spinor as secretly four components with a non-trivial transformation
under rotations.

Now in our representation (the chiral representation), S[Λ] is block diagonal. It takes the form

S[Λ] =



(
eiφ·σ/2 0

0 eiφ·σ/2

)
for rotations,(

e−χ·σ/2 0
0 e−χ·σ/2

)
for boosts.

From Symmetries, we might recall that since the representation takes a block diagonal form, it is reducible,
i.e. it decomposes into two irreducible representations acting on UL, UR, where we now write

ψ =

(
UL
UR

)
with UL, UR some 2-component C objects. We call UL and UR (where L, R stand for left and right) Weyl or
chiral spinors. They transform identically under rotations,

UL,R → eiφ·σ/2UL,R

but oppositely under boosts,

UL → e−χ·σ/2UL

UR → e+χ·σ/2UR.

In group theory language, we say that UL is in the (1/2, 0) representation of the Lorentz group, while UR
is in the (0, 1/2) representation (where the Lorentz group SO(1, 3) ' SU(2)× SU(2)). A general spinor is
in the direct product space,

ψ = (1/2, 0)⊕ (0, 1/2).
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The Weyl equation Let us now decompose the Dirac Lagrangian LD in terms of Weyl spinors. Thus

LD = ψ̄(i/∂ −m)ψ = iU†
Lσµ∂µUL + iU†

Rσ̄µ∂µUR −m(U†
LUR + U†

RUL),

where σµ ≡ (I, σ), σ̄µ ≡ (I,−σ). We observe that the kinetic terms separate entirely– it is only the mass
term which mixes UL and UR. A massive spinor requires both UL and UR in general, but a massless
fermion only requires a single one (e.g. UL). This leads us to write

iσµ∂µUL = 0,

iσ̄µ∂µUR = 0,

which are known as Weyl’s equations.
Naïvely, we expect that since UL and UR each have two complex components, our count of the real

degrees of freedom should come out to 2× 2× 2 = 8. But it turns out this is not quite right. In classical
mechanics, the number of degrees of freedom are typically given by

# d.o.f. =
1
2
× (dimensionality of phase space.).

In field theory, we discuss instead the d.o.f. per spacetime point. For a real scalar φ, the conjugate
momentum is Πφ = φ̇ =⇒ # d.o.f.= 1

2 × (2) = 1. However, for a spinor we have Πψ = ψ†, not ψ̇. Therefore
we get 4 complex components = 8 real degrees of freedom is ψ, but no extra in ψ†. The upshot is that for
spinors,

# d.o.f. =
1
2
(8) = 4.

We can choose spin ↑ or spin ↓, and consider particles or antiparticles, so 2× 2 = 4. We’ll explore what
happens to the extra degrees of freedom next time.

Lecture 17.

Saturday, November 10, 2018

We saw in the chiral representation that the spinor representation S[Λ] was block diagonal, but this is not
always true. As far as we are concerned, any repn related to the original γµs by a similarity transformation
is equally good,

γµ → UγµU−1.

However, what we would like is a repn independent way to define the Weyl spinors. As it turns out, we
can do this by defining the matrix γ5 as

γ5 ≡ iγ0γ1γ2γ3.

One can check (quick exercise) that γ5 satisfies

{γµ, γ5} = 0 and (γ5)2 = I.

In the chiral repn, γ5 takes the form

γ5 =

(
−I 0
0 I

)
.

Let us define the projection operators

PL ≡
1
2
(I − γ5)

PR ≡
1
2
(I + γ5).

Note this convention is slightly different than the one in David Tong’s notes. Under these definitions, one
can see that

P2
L = PL, P2

R = PR, and PLPR = 0.

From the explicit form of γ5, it’s clear that these projection operators select the corresponding Weyl spinors.
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Definition 17.1. We define a left-handed spinor as

ψL = PLψ,

and similarly a right-handed spinor as
ψR = PRψ.

For instance, neutrinos are left-handed spinors, while the right-handed up quark is a right-handed spinor.
Handedness can be more physically defined in terms of whether a particle’s spin is parallel or antiparallel

to its velocity. Note that massive left-handed and right-handed spinors can be transformed into one another
by a Lorentz boost, since we can boost into the rest frame of a massive particle (for instance) or boost
past it into a frame where it appears to be moving in the opposite direction. This is not the case for the
massless Weyl spinors we defined before– you can never catch up with or overtake a massless particle, so
its handedness is invariant under Lorentz transformations.

One can now construct new tensors using γ5, e.g.

ψ̄(x)γtψ(x)→LT ψ̄(Λ−1x)S[Λ]−1γ5S[Λ]ψ(Λ−1x).

We call such a quantity a pseudoscalar, and one can check that [Sµν, γt] = 0, so our pseudoscalar under a
Lorentz transformation transforms to

ψ̄(Λ−1x)γ5ψ(Λ−1x).

However, it’s not quite a scalar because of a subtle point we’ll come to shortly. Similarly we can define

ψ̄(x)γ5γµψ(x),

which we call an axial vector. These are distinguished from regular scalars and vectors by their behavior
under a parity transformation.

We say that ψL, ψR are related by parity, i.e. a flip in handedness. So far, all the Lorentz transformations
we’ve looked at were continuously connected to the identity (i.e. they are in the connected component
of O(3, 1)). In fact, there are also two discrete symmetries we can consider which leave four-vector inner
products fixed.44

◦ Time reversal T : x0 → −x0, xi → xi

◦ Parity P : x0 → x0, xi → −xi.

Note that P involves flipping all three spatial components, since changing the sign of only one or two is
equivalent to a rotation (and therefore that transformation is in the same connected component).

Under P, rotations don’t change sign, but boosts do. That is,{
U± → eiφ·σ/2U± under rotations,
U± → e±χ·σ/2U± under boosts.

Therefore we see that P exchanges left- and right-handed spinors:

P : ψL/R(x, t)→ ψR/L(−x, t).

For a Dirac spinor, this is implemented by

P : ψ(x, t)→ γ0ψ(−x, t).

The quantity ψ̄ψ(x, t) → ψ̄ψ(−x, t), so ψ̄ψ transforms under P like a scalar. Meanwhile, ψ̄γµψ(x, t)
transforms as

ψ̄γµψ(x, t)→


ψ̄γ0ψ(−x, t) µ = 0
ψ̄γ0γiγ0ψ(−x, t) µ = i
= −ψ̄γiψ(−x, t).

44The connected components of the Lorentz group have the structure of V4, the Klein four-group. All these transformations do is
switch around regions between parts of the light cone, if you like.
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Coupling Name Number
ψ̄ψ scalar 1

ψ̄γµψ vector 4
ψ̄Sµνψ tensor 4× 3/2 = 6
ψ̄γ5ψ pseudoscalar 1

ψ̄γ5γµψ pseudovector 4
Table 1. The different bilinears we can write down for spinors. They can be characterized
by how they transform under Lorentz transformations and parity.

Therefore this transforms as a vector under P, with the spatial part flipping sign. Some other combinations
we can cook up are the transformation of

ψ̄γtψ(x, t) = ψ̄γ0γ5γ0ψ(−x, t)

= −ψ̄γ5ψ(−x, t),

so the minus sign here leads us to call this a pseudoscalar, while ψ̄γ5γµψ(x, t) transforms as

ψ̄γ5γµψ(x, t)→ ψ̄γ0γ5γµγ0ψ(−x, t)

=

{
−ψ̄γ5γ0ψ(−x, t) µ = 0
+ψ̄γ5γiψ(−x, t) µ = i.

The different sorts of bi-linears (combos of a ψ̄ and ψ) we can cook up is summarized in Table 1. We can
add extra terms to the Lagrangian using γ5, but such terms break P symmetry. Nature in fact uses thes, e.g.
terms in the Lagrangian like

L =
g
2

Wµψ̄γµ(1− γ5)ψ.

For instance, the W boson is a vector field which only couples to left-handed fermions.

Definition 17.2. A theory which puts ψL, ψR on equal footing is called vector-like. If they appear diffe-
rently/have different interactions, the theory is called chiral.

It turns out the Standard Model is a chiral theory– Chien-Shiung Wu famously observed in 1956 that
parity symmetry is explicitly violated in beta decays.

Symmetries and currents of spinors We might now like to understand what the corresponding conserved
quantities are that correspond to spinors. For instance, under spacetime translation we have

xµ → xµ − αεµ,

so
∆ψ = εµ∂µψ =⇒ Tµν = iψ̄γµ∂νψ− ηµνLD.

This comes from applying Noether’s theorem straightforwardly to the Dirac Lagrangian. We get a conserved
current when the equations of motion are obeyed, so we can impose them on Tµν. This doesn’t help us
in the bosonic case where the equations of motion are second-order, but for spinors it does because the
equatiosn are first order. Thus

(i/∂ −m)ψ = 0 =⇒ we can set LD = 0 in Tµν.

Therefore
Tµν = iψ̄γµ∂νψ.

We can write LD in a more symmetric way by splitting it up and integrating by parts,

S =
∫

d4x
1
2

ψ̄(i/∂→ −m)ψ +
1
2

ψ̄(−i/∂← −m)ψ =
1
2

ψ̄(i/∂↔ −m)ψ

where the↔ indicates a symmetrization. Thus we can write

Tµν =
i
2

ψ̄(γµ∂ν − γν∂µ)ψ.



18. Tuesday, November 13, 2018 53

Lecture 18.

Tuesday, November 13, 2018

Today, we’ll continue our discussion of symmetries and currents of spinors. The spacetime translations
give rise to a stress-energy tensor Tµν = iψ̄γµ∂νψ. We can also consider the current associated to Lorentz
transformations:

ψα → S[Λ]αβψβ(xµ −ωµ
νxν)

where ωµ
ν = 1

2 Ωρσ(Mρσ)µ
ν. If we take (Mρσ)µ

ν = ηρµδσ
ν − ησµδ

ρ
ν , we get ωµν = Ωµν. Thus the variation in

ψα is

δψα = −ωµ
νxν∂µψα +

1
2

Ωρσ(Sρσ)α
βψβ.

Substituting for Ωµν and pulling out ωµν, we find that

δψα = −ωµν[xν∂µψα − 1
2
(Sµν)

α
β
ψβ].

Similarly, the variation in ψ̄ is given by

δψ̄α = −ωµν[xν∂µψ̄α +
1
2

ψ̄β(Sµν)
β

α
].

Note that this last term comes with a plus sign for ψ̄. Applying Noether’s theorem, we get the conserved
currents

(Jµ)ρσ = xρTµσ − xσTµρ − iψ̄γµSρσψ.
The first two terms are the same as in the scalar case, but we get an extra term which will give us the
properties of spin 1/2 after quantization.

For example, the last term for (J0)ij is given by

(J0)ij = −iψ̄γ0Sijψ

=
1
2

εijkψ†
(

σk 0
0 σk

)
ψ,

where we have written the second line in the chiral repn, used the commutation relations of the γ matrices,
and take i, j, k ∈ {1, 2, 3}.

There are also internal vector-like symmetries,

ψ→ eiαψ =⇒ δψ = iαψ.

Thus the conserved current here is
jµ
V = ψ̄γµψ,

with the conserved quantity

Q =
∫

d3xψ̄γ0ψ =
∫

d3xψ†ψ.

This has the interpretation of conserved electric charge and particle number.
Finally, we have axial symmetries. In the m = 0 limit, we can do ψ → eiαγ5

ψ, which rotates LH/RH
spinors in opposite directions. The conserved axial vector current is then

jµ
A = ψ̄γµγ5ψ.

Plane wave solutions We’d like to solve the Dirac equation,

(i/∂ −m)ψ = 0.

In particular, we will look for solutions of the form

ψ = upe−ip·x.

Substituting into the Dirac equation (using the chiral repn for γµ), we have

(/p −mI)up =

(
−m pµσµ

pµσ̄µ −m

)
up = 0. (18.1)
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Let us now claim that the solution is

up =

(√
p · σ ξ√
p · σ̄ ξ

)
for any constant two-component spinor ξ, normalized such that ξ†ξ = 1.

Proof. Let us suppose that up =

(
u1
u2

)
and substitute into Eqn. 18.1. Then we get

(p · σ)u2 = mu1 (18.2)

(p · σ̄)u1 = mu2. (18.3)

Indeed, either of these implies the other since

(p · σ)(p · σ̄) = p2
0 − pi pjσ

iσj

= p2
0 − pi pj

1
2
{σi, σj}︸ ︷︷ ︸

δij

= pµ pµ = m2.

So multiplying the first by p · σ̄ gives the second, for instance. Now we try the solution

u1 = (p · σ)ξ ′

for some 2-spinor ξ ′ to find that

u2 =
1
m
(∂ · σ̄)(p · σ)ξ ′ = mξ ′.

What this tells us is that any vector of the form

up = A
(
(p · σ)ξ ′

mξ ′

)
is a solution to 18.1 with A a constant. To make this look more symmetric, we choose A = 1/m and
ξ ′ =

√
p · σ̄ξ,with ξ constant. Then

up =

(√
p · σξ√
p · σ̄ξ

)
.

�

Example 18.4. Let’s take a massive spinor in its rest frame, mass m and p = 0. Then

up =
√

m
(

ξ
ξ

)
for any ξ. Under spatial rotations, ξ transforms to

ξ → eiσ·φ/2ξ,

and after quantization, ξ will describe spin. For instance, ξ =

(
1
0

)
will be a spin ↑ along the z-axis.

What happens if we boost the particle along the x3 axis? We get

up


√

E− p3
(

1
0

)
√

E + p3
(

1
0

)
→E→p3,m→0

√
2E


0
0
1
0


and for spin down we have

up


√

E + p3
(

0
1

)
√

E− p3
(

0
1

)
→m→0

√
2E


0
1
0
0

 .
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We’ve been a little slick in rewriting the nonvanishing component of p · σ, since the argument of the
square root is technically a matrix. But we won’t dwell on this too much except to say that it seems to be
well-defined for our purposes.

Note that there are also negative frequency solutions to the Dirac equation. We simply take the ansatz

of ψ = vpe+ip·x and get some similar solutions vp =

( √
p · ση

−√p · σ̄η

)
, with η a two-component spinor where

η†η = 1.

Definition 18.5. The helicity operator projects angular momentum along the direction of motion:

h = p̂ · s =
1
2

p̂i

(
σi 0
0 σi

)
.

The massless spin ↑ particle has h = +1/2, while the massless spin ↓ particle has h = −1/2, as one might
expect.

Quantizing the Dirac field The Dirac field admits a quantization– if we throw around some creation and
annihilation operators like we as field theorists are wont to do, we find that the field can be written as

ψ(x) =
2

∑
s=1

∫ d3 p
(2π)3

1√
2Ep

[
bs

pus
peip·x + cs†

p vs
pe−ip·x

]
and ψ† is similar,

ψ(x)† =
2

∑
s=1

∫ d3 p
(2π)3

1√
2Ep

[
bs†

p us†
p eip·x + cs

pvs†
p e−ip·x

]
.

Lecture 19.

Thursday, November 15, 2018

Today we’ll continue our discussion of quantizing the Dirac field, which describes the behavior of spinors
(e.g. spin 1/2 particles). For bosons, we had commutation relations. In fermionic quantization, we instead
require anti-commutation relations between the creation and annihilation operators. That is, defining the
anti-commutator as

{A, B} ≡ AB + BA,
we have the following anti-commutation relations.

{ψα(x), ψβ(y)} = 0

{ψ†
α(x), ψ†

β(y)} = 0

{ψα(x), ψ†
β(y)} = δαβδ3(x− y).

We now claim these are equivalent to the following anti-commutation relations for the creation and
annihilation operators:

{br
p, bs†

q } = {cr
p, cs†

q } = (2π)3δrsδ3(p− q),
with all other anticommutators vanishing. (See Sheet 3, Q6 for the computation.)

The corresponding Hamiltonian is

H = πψ̇−L = iψ†ψ̇− iψ̄γ0∂0ψ− iψ̄γi∂iψ + mψ̄ψ.

One finds that the first two terms cancel, so we are left with the Hamiltonian

H = ψ̄(−iγi∂i + m)ψ.

We can now plug in the expansions for ψ, ψ̄ which we wrote down last lecture and use the anti-commutation
relations for operators (plus some results on products of spinors) to show that

ur†
p us

p = vr†
p vs

p = 2p0δrs,

ur†
p vs

p = vr†
p us

p = 0.
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We’ll show this on Sheet 3, Q7. Thus the Hamiltonian can be rewritten (after normal ordering) as

H =
∫ d3 p

(2π)3 Ep

2

∑
s=1

(bs†
p bs

p + cs†
p cs

p).

The issue with trying to use commutation relations is that they produce a minus sign in one of the terms
in the Hamiltonian, meaning that one can reduce the energy of a state by creating a particle. In words,
the vacuum state becomes unstable, and we get an explosion of particles as the energy decreases without
bound. This isn’t really physical so anti-commutation relations are the way to go.

The spinor field also leads to Fermi-Dirac statistics. Note that

bs
p |0〉 = 0 = cs

p |0〉 .

Although bs
p, cr

p have anti-commutation relations, the Hamiltonian H has the usual commutation relations
with them (check this):

[H, br†
p ] = Epbr†

p

[H, br
p] = −Epbr

p.

Let’s set up the state

|p, r〉 ≡ br†
p |0〉 .

Then by the anti-commutation relations, the two-particle state obeys

|p1, r1; p2, r2〉 = − |p2, r2; p1, r1〉 ,

which precisely means the state is antisymmetric under exchange of particles.
Let’s now pass to the Heisenberg picture. We have ψ(x) satisfying ∂ψ

∂t = i[H, ψ], which is solved by

ψα(x) =
2

∑
s=1

∫ d3 p
(2π)3

1√
2Ep

(bs
pus

pα
e−ip·x + cs†

p vs
pα

e+ip·x).

ψ†
α is similar, but with daggers everywhere:

ψ†
α(x) =

2

∑
s=1

∫ d3 p
(2π)3

1√
2Ep

(bs†
p us†

pα
e+ip·x + cs

pvs†
pα

e−ip·x).

In analogy with the Feynman propagator ∆(x− y) = [φ(x), φ(y)], let us now define

iSαβ(x− y) = {ψα(x), ψ̄β(y)}.

In what follows, we’ll drop the indices α, β but should remember that S is really a 4× 4 matrix since α and
β index over the four spinor components. We substitute in our expressions for ψ, ψ̄ from above to find

iS(x− y) = ∑
r,s

∫ d3qd3 p
(2π)6

√
4EpEq

(
{bs

p, br†
q }us

pūr
qe−i(p·x−q·y) + {cs†

p , cr
q}vs

pv̄r
qei(p·x−q·y)

)
. (19.1)

Using the anticommutation relations of b, c we have

iS(x− y) =
∫ d3 p

(2π)32Ep

(
2

∑
s=1

us
pαūs

pβe−ip·(x−y) + vs
pαv̄s

pβe+ip·(x−y)

)
.

We see that (Sheet 3, Q5) these uū terms become (/p + m)αβ, so the overall expression becomes

iS(x− y) = (i/∂x + m)D(x− y)− (i/∂x + m)D(y− x),

where /∂x = γµ ∂
∂xµ and D(x− y) =

∫ d3 p
(2π)32Ep

e−p·(x−y).

Some comments on how to interpret this.
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(a) For spacelike separations (x− y)2 < 0, D(x− y)− D(y− x) = 0. In bosonic theory, we made a big
deal of this, since it ensured that the commutator was zero for spacelike separations. We interpreted
this as saying that our theory was causal– the propagator from point x to y precisely cancels the
contribution from propagating from y to x when x and y are spacelike separated. What can we say
about the anticommutation relation in our spinor theory? We have

{ψα(x), ψ̄β(y)} = 0 ∀(x− y)2 < 0.

However, it turns out that all observables are bilinear in ψ, ψ̄ (cf. our table 1) and so the observables
do commute at spacelike separations. The theory is still causal.

(b) Away from singularities (e.g. poles in the S-matrix), we have

(i/∂x −m)S(x− y) = 0.

The proof is by direct computation:

(i/∂x −m)S(x− y) = (i/∂x −m)(i/∂x + m)[D(x− y)− D(y− x)]

= −(∂2
x + m2)[D(x− y)− D(y− x)]

= 0 using p2 = m2 on-shell.

In going from the first to the second line, we have also cancelled the slashes (see Sheet 3 Q3):
/∂/∂ = ∂2.

These taken together allow us to write down the Feynman propagator for spinors. A similar calculation
gives

〈0|ψα(x)ψ̄β(y) |0〉 =
∫ d3 p

(2π)32Ep
(/p + m)αβe−ip·(x−y).

We had almost the same thing in the bosonic case, but without the /p + m. Similarly,

〈0| ψ̄β(x)ψα(y) |0〉 =
∫ d3 p

(2π)32Ep
(/p −m)βαe−ip·(x−y).

One should check this (as one of many, many exercises).
Let us now define

SF,αβ(x− y) ≡ 〈0| T{ψα(x)ψ̄β(y)} |0〉 =
{
〈0|ψα(x)ψ̄β(y) |0〉 : x0 > y0

− 〈0| ψ̄β(y)ψα(x) |0〉 : y0 > x0.
(19.2)

Note the minus sign is required for Lorentz invariance. When (x− y)2 < 0, {ψ(x), ψ̄(y)} = 0 and so T as
defined is Lorentz invariant. The same is true for strings of fermionic operators inside the time ordering T:
they anti-commute, so [φ1, ψ] = 0, {ψ1, ψ̄2} = 0, [φ1, φ2] = 0 sum up the relations of bosonic and fermionic
fields.

We also pick up the sign flip when computing normal-ordered products, which will affect Wick’s
theorem. Here,

: ψ1ψ2 := − : ψ2ψ1 :
We can write the contraction

SF(x− y) ≡
︷ ︸︸ ︷
ψ(x)ψ̄(y),

so the time-ordered version gives us

T[ψ(x)ψ̄(y)] =: ψ(x)ψ̄(y) : +
︷ ︸︸ ︷
ψ(x)ψ̄(y) .

Wick’s theorem is then as before, but with extra minus signs, e.g.

: ψ+
1 ψ−2 := −ψ−2 ψ+

1 .

If we want to contract ψ1 with ψ̄3 in the expression

: ψ1ψ2ψ̄3ψ4 :

then we have to anti-commute ψ̄3, ψ2 to get

:
︷ ︸︸ ︷
ψ1ψ2ψ̄3 ψ4 := − :

︷ ︸︸ ︷
ψ1ψ̄3 ψ2ψ4 := −

︷ ︸︸ ︷
ψ1ψ̄3 : ψ2ψ4 :
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The Feynman propagator for spinors is therefore

SF(x− y) = i
∫ d4 p

(2π)4 e−ip·(x−y) /p + m
p2 −m2 + iε

,

which satisfies
(i/∂ −m)SF(x− y) = iδ4(x− y),

so SF is a Green’s function of the Dirac equation.

Lecture 20.

Saturday, November 17, 2018

Today we will discuss fermionic Yukawa theory. Before, we looked at Yukawa theory in a simplified
scalar case. However, nucleons are really fermions. The interactions between fermions and a scalar particle
are governed by the Yukawa interaction,

L =
1
2

∂µφ∂µφ− µ2

2
φ2︸ ︷︷ ︸

scalar mass

+ψ̄(i/∂ −m)ψ− λφψ̄ψ︸ ︷︷ ︸
Yukawa interaction

. (20.1)

From the kinetic terms, we see that [φ] = 1 and [ψ] = [ψ̄] = 3/2, which is a bit unusual. We conclude that
[λ] = 0 which means that this coupling is marginal.

Let us consider again the process of nucleon-nucleon scattering, ψψ→ ψψ. Now we must keep track of
spin indices as well as momentum. Our initial state is a two-particle state

|i〉 =
√

2Ep

√
2Eqbs†

p br†
q |0〉

and our final state is similar,
| f 〉 =

√
2Ep′

√
2Eq′b

s′†
p′ b

′r†
q′ |0〉

As before, we will disregard the O(λ0) term where the particles do not interact, and there is no O(λ) term
as in the scalar case. Therefore the leading order interesting behavior is the O(λ2) term:

〈 f | (S− 1) |i〉 = 〈 f | (−iλ)2

2!

∫
d4x1d4x2T [ψ̄(x1)ψ(x1)φ(x1)ψ̄(x2)ψ(x2)φ(x2)] |i〉 . (20.2)

All fields are in the interaction picture as usual. We’ll use Wick’s theorem to compute the time ordering.
The contribution to the scattering then comes from the contraction

: ψ̄(x1)ψ(x1)ψ̄(x2)ψ(x2) :
︷ ︸︸ ︷
φ(x2)φ(x1) .

Thus the ψs will annihilate the |i〉 and the ψ̄s will create 〈 f | . In order to put the normal-ordered bit in the
right order, we must anticommute ψ̄(x2) past ψ(x1), picking up a sign flip for our trouble. We therefore get
the interaction

I ≡: ψ̄α(x1)ψα(x1)ψ̄β(x2)ψβ(x2) : bs†
p br†

q |0〉

= −
∫ d3k1d3k2

(2π)62
√

Ek1 Ek2

[
ψ̄α(x1)Um

k1,α

] [
ψ̄β(x2)Un

k2,β

]
e−i(k1x1+k2x2)bm

k1
bn

k2
bs†

p br†
q |0〉 .

Here, the Us are the planar wave solutions from before, and the square bracket means that we contract over
the four spinor indices. The other terms i the expansion go to zero because they have either 〈0| c† = 0 or
c |0〉 = 0. Looking at the creation and annihilation operators, we can rewrite as

bm
k1

bn
k2

bs†
p br†

q |0〉 = (bm
k1
{bn

k2
bs†

p }br†
q − bm

k1
bs†

p {bn
k2

br†
q }) |0〉

= ({bm
k1

br†
q }{bn

k2
bs†

p } − {bm
k1

bs†
p }{bn

k2
br†

q }) |0〉 ,

where we have used the fact that annihilation operators kill the vacuum state and anticommutators are just
c-numbers. Thus this whole expression becomes delta functions,

(2π)6[δ3(k2 − p)δ3(k1 − q)δnsδmr − δ3(k1 − p)δ3(k2 − q)δmsδnr] |0〉 .
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Figure 4. The closed fermion loop diagram. Image from Wikipedia.

Hence I simplifies somewhat to

I = − 1
2
√

EpEq

{
[ψ̄(x1)Ur

q][ψ̄(x2)Us
p]e
−i(q·x1+p·x2) − [ψ̄(x1)Us

p][ψ̄(x2)Ur
q]e
−i(p·x1+q·x2)

}
|0〉 .

We still need to apply the final state to get

−
2
√

2Ep′Eq′

2
√

EpEq
〈0| br′

q′b
s′
p′

{
[ψ̄(x1)Ur

q][ψ̄(x2)Us
p]e
−i(q·x1+p·x2) − [ψ̄(x1)Us

p][ψ̄(x2)Ur
q]e
−i(p·x1+q·x2)

}
|0〉 .

From here, we pass to the integral representation, writing

−
2
√

2Ep′Eq′

2
√

EpEq
〈0|
[∫ d3k1d3k2

2
√

Ek1 Ek2(2π)6 br′
q′b

s′
p [Ū

m
k1

Ur
q]b

m†
k1

bn†
k2
[Ūkn

2
us

p]e
i(k1x1+k2x2)−i(q·x1+p·x2) − . . .

]
where the . . . indicates a similar term with p and q switched, r and s switched. But the bs pair up nicely to
give us delta functions:

br′
q′b

s′
p bm†

k1
bn†

k2
= (2π6) 〈0| (δs′mδr′nδ3(p− k1)δ

3(q′ − k2)− . . .)

where . . . is the same with m, n switched and k1, k2 switched. After applying delta functions (check the
Tong notes for this) the expression cleans up in the same way that the Feynman diagrams would have
shown us, but keeping track of spins. Writing 〈 f | (S− 1) |i〉 = iM(2π)4δ4(p + q− p′ − q′), we get

M = −(−iλ)2

 [Ūs′
p′U

r
q][Ūr′

q′u
s
p]

(q′ − p)2 − µ2 + iε
−

[ūr′
q′U

r
q][Ūs′

p′U
s
p]

(p′ − p)2 − µ2 + iε

 . (20.3)

That was a lot of work. What can Feynman tell us about this matrix element? We have some momentum
space Feynman rules for fermion amplitudes. They are as follows.

◦ Dirac fermions preserve fermion number, so the arrows must not clash (e.g. no two arrows into a
vertex).
◦ Incoming fermions get a momentum and a spinor index, Us

p. Outgoing fermions get Ūs
p instead.

◦ Incoming antifermions get v̄s
p and outgoing antifermions, vs

p.
◦ We impose 4-momentum conservation at each vertex.
◦ Each three-point vertex with a dashed line (the scalar) gets a factor of (−iλ).
◦ Internal lines for ψs with spinor indices α going to β get propagators

i(/p + m)βα

p2 −m2 + iε
,

where these α, β indices are contracted at vertices with other propagators or with external spinors.
(The indices are contracted in the opposite direction to the fermion number arrows.)

For example, for the closed fermion loop in Fig. 4 we get an amplitude which goes as

−
︷ ︸︸ ︷
ψ̄α(x)

︷ ︸︸ ︷
ψα(x)ψ̄β(y)ψβ(y) = −

︷ ︸︸ ︷
ψβ(y)ψ̄α(x)

︷ ︸︸ ︷
ψα(x)ψ̄β(y) .

https://commons.wikimedia.org/wiki/File:One-loop-diagram.svg
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So we get an additional minus sign for a fermion loop, as well as the usual d4k/(2π)4 and fermion
propagators.

Lecture 21.

Tuesday, November 20, 2018

Here’s an important note about Wick’s theorem on spinor fields. We can only contract spinor fields in

the order
︷ ︸︸ ︷
ψ(x)ψ̄(y). So far, we’ve looked at simple couplings like λφψ̄ψ. What if we inserted a γ5 to get

Lint = −λφψ̄αγ5
αβψβ?

We simply pick up a γ5 in the interaction. Thus the three-point interaction is proportional to −iγ5
αβλ. Note

that this interaction only preserves P symmetry if φ is also a pseudoscalar, i.e. if Pφ(t, x) = −φ(t,−x).
We might then ask how to deal with spin indices when computing our physical observables like |M|2

or σ. It turns out that in most experiments (e.g. at the LHC) the beams are prepared with random initial
spin states, so when calculating observables it suffices to average over the spins. In scattering of two
spin 1/2 particles, for instance, we would sum 1

4 ∑s,r where the 1/4 accounts for the four combinations
|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . The final states will also have some spin states, but we can take care of this by
summing over final spins to get the cross-section variables.

Note also that for ψψ → ψψ scattering, the matrix element is M ≡ A− B where A and B are the two
different terms. Therefore the square of the matrix element is

|M|2 = |A|2 + |B|2 − A†B− B† A

where a bar indicates averaging/summing over spins. Here,

A =
λ2[ūs′

p′u
r
q][ūr′

q′u
s
p]

u− µ2 + iε
.

However, note that we can rewrite
[ūs′

p′u
r
q] = [ūr

qus′
p′ ]

since (γ0)† = γ0. Now

|A|2 =
λ4

4 ∑
r,s,r′ ,s′

ūs′
p′ ,αur

q,αūr
q,βus′

p′ ,β

(u− µ2)2 ūr′
q′ ,γus

p,γūs
p,δur′

q′ ,δ.

After summing over r (cf. Example Sheet 3), we get a pair of traces,

|A|2 =
λ4

4
Tr[(/p′ + m)(/q + m)

(u− µ2)2 Tr(/q′ −m)(/p + m)].

In the high-energy (low-mass) limit as µ, m→ 0, we get

|A|2 =
λ4

4u2 Tr[/p′/q ]Tr[/q′/p].

Similarly |B|2 comes out to

|B|2 =
λ4

4t2 Tr[/q′/q ]Tr[/p′/p].

We can also do the same for the cross-terms to find

A†B =
λ4

4ut ∑
r,s,s′r′

{ūr
q,βus′

p′ ,βūs
p,αur′

q′ ,αūr′
q′ ,γur

q,γūs′
p′ ,δus

p,δ}

=
λ4

4ut
Tr(/p /p′/q /q′).

Can we do this without going through the Wick way? Let us write down some Feynman rules for |M|2
with fermions.

◦ C conjugation switches the initial and final momenta.
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◦ Fermion lines with identical momenta are joined on the LHS. A closed fermion line is given by a
trace over γ matrices (after spin sum/average), with any γ matrices at vertices placed in the correct
position in the trace. Fermion lines are followed backwards (against the arrows).

Applying the Feynman rules, we can read off the traces:

|M|2 =
λ4

4

{
Tr(/q/q ′)Tr(/p/p′)

t2 +
Tr(/q ′/p)Tr(/p′/q)

u2 − 2ReTr/p/p′/q/q ′

ut

}
We can rewrite these traces as dot products, and moreover we know some good properties of the Mandel-
stam variables:

s = (p + q)2 = (p′ + q′)2 =⇒ p · q = p′ · q′ = s/2

t = (p− p′)2 = (q− q′)2 =⇒ p · p′ = q · q′ = −t/2

u = (p− q′)2 = (q− p′)2 =⇒ p · q′ = p′ · q = −u/2.

In terms of dot products, the matrix element is

λ

4

[
4(q · q′)4p · p′

t2 +
4(q′ · p)4(p′ · q)

u2 − 8
ut

(p · q′p′ · q + p · p′q · q′ − p · qp′ · q′)
]

.

Thus the matrix element reduces to

|M|2 = λ4
{

1 + 1− u2 + t2 − s2

2ut

}
.

In terms of the differential cross-section, we now have

dσ

dt
=

|M|2
16πλ(s, m2

1, m2
2)

.

But in this limit m1 = m2 = 0 and λ(s, 0, 0) = s2. t = 2|p|p′|(cos θ − 1) in the center-of-mass frame, and
|p| = |p′| =

√
s/2. Therefore

dt
d cos θ

= 2|p||p′| = s/2

and we find that

dΩ = d cos θdφ =⇒ dσ

dΩ
=

s
4π

dσ

dt
=
|M|2

64π2s
=

3λ4

64π2s
.

If we now integrate the final state over the hemisphere of solid angle (since the particles are identical), we
find that the total cross-section is

σ =
3λ4

32πs
.

Note that [λ] = 0 and [s] = 2, so indeed this quantity has a mass dimension of −2, i.e. has dimensions of
area.

Lecture 22.

Thursday, November 22, 2018

As a quick reminder, there is no lecture on Saturday! The lecture has been rescheduled to Monday at 1
PM in MR2. Also, a correction to Examples Sheet 3, Q8: s2 in the numerator should be (s− 4m2)2.

Quantum electrodynamics (QED) It’s time now to quantize the free electromagnetic field Aµ. The
Lagrangian is

L = −1
4

FµνFµν, (22.1)

where Fµν ≡ ∂µ Aν − ∂ν Aµ is the field strength tensor. If we compute the equations of motion by the usual
Euler-Lagrange procedure, we find that

∂µ

(
∂L

∂(∂µ Aν)

)
= 0 = ∂µFµν.
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From its definition in terms of Aµ, we see that Fµν therefore satisfies the Bianchi identity, i.e.

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (22.2)

From this simple-looking Lagrangian, we can recover all of Maxwell’s equations. We’ll need to be a little
careful about signs in our definition of 3-vectors, so let us write the potential as Aµ = (φ, A) such that
A = (A1, A2, A3). Then the electric field is

E = −∇φ− Ȧ

where

∇ ≡
(

∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
= ∂i.

We also define the magnetic field as
B = ∇ ∧A,

where the wedge product is really just telling us to take the curl of A like we learned in freshman
electrodynamics. Thus

E = (F01, F02, F03) = (−F01,−F02,−F03).
Looking at the definition of B, we see that if B = (B1, B2, B3), then for instance

B3 = ∂1 A2 − ∂2 A1 = −∂1 A2 + ∂2 A1 = −F12.

All in all, the field strength tensor allows us to recover all the elements of the electric and magnetic fields,

Fµν =


0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

 .

Here, µ indexes over rows and ν indexes over columns. The Bianchi identity then reads

∇ · B = 0 and Ḃ = −∇ ∧ E,

while the equations of motion give
∇ · E = 0 and Ė = ∇ ∧ B.

These are precisely Maxwell’s equations in vacuum.
Now let’s quantize the field. Our Lagrangian has no mass term, which is as we expect since the photon

is a massive vector field (spin 1) Aµ. However, there are four components of Aµ, so it seems that we have 4
real degrees of freedom (µ = 0, 1, 2, 3) even though the photon only has two polarization states! How do
we resolve this? We make the following observations.

◦ A0 is not dynamical since Fµν is antisymmetric– there’s no kinetic term for it in the Lagrangian L.
In particular, given Ai(x, t0) and Ȧi(x, t0), A0 is fully determined. For if ∇ · E = 0 then

∇2 A0 +∇ · Ȧ = 0,

with solution45

A0(x, t0) =
∫ d3x′∇ · Ȧ(x′, t0)

4π|x− x′| . (22.3)

So A0 isn’t independent– there are really only three real degrees of freedom.
◦ There is a large symmetry group of transformations of the form

Aµ(x)→ Aµ(x) + ∂µλ(x)

with λ such that lim|x|→∞ λ(x) = 0. Under such a transformation, we find that

Fµν → ∂µ(Aν + ∂νλ)− ∂ν(Aµ + ∂µλ) = ∂µ Aν − ∂ν Aµ

since partial derivatives commute, so Fµν and therefore L is invariant under these transformations.
Equivalently, we may write the equations of motion as ηµν∂ρFρν = 0 or

(ηµν∂ρ∂ρ − ∂µ∂ν)Aν = 0.

45This is just the Green’s function for ∇2.
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Note that the operator in parentheses is not invertible– it annihilates functions of the form ∂νλ(x).
Therefore there is a redundancy in our description of the vector field Aν, which we call a gauge
symmetry. The existence of a gauge symmetry is equivalent to the statement that there is no unique
solution for Aµ; it is only determined up to adding functions of the form ∂µλ(x).

We say that the configuration space for Aµ is then foliated46 by gauge orbits47. We can draw these as lines
in configuration space, such that all states on a given line represent the same physical state. To actually
compute things, we usually take a representative from a gauge orbit (“fix the gauge”), and in general we
should choose a gauge that any Aµ can be put into. Here are some examples.

(a) Loren(t)z48 gauge:
∂µ Aµ = 0.

This is a suitable gauge, as one can always put Aµ into this form. The proof is straightforward– if
we have an Aµ such that ∂µ Aµ = f (x), we simply define Ãµ = Aµ + ∂µλ(x) where ∂mu∂µλ(x) =
∂2λ = − f (x). We can solve this by our usual Green’s function tricks for ∂2,49 and then ∂µ Ãµ = 0.
However, this gauge still does not completely specify Aµ (remember what I said about the orbits
being hypersurfaces), as we can always add to our new Aµ any ∂µλ̃ such that ∂2λ̃ = 0, of which
there are infinitely many choices for λ̃. The advantage of this gauge is that it is Lorentz invariant,
and often convenient when we want to write propagators and other quantities in a manifestly
covariant way.

(b) Coulomb gauge/radiation gauge:
∇ ·A = 0.

We can always put Aµ into this form by similar arguments to the Lorenz gauge, but with the regular
three-dimensional Laplacian rather than the full ∂2 operator. Referring back to Eqn. 22.3, we see
that this gauge sets A0 = 0 in vacuum. The advantage of this gauge is that it makes manifest the
two physical degrees of freedom, i.e. the two polarization states of the photon. However, we lose
Lorentz invariance.

Having resolved the question of the extra degrees of freedom in Aµ, let us now proceed to write the
Hamiltonian for the EM field. What are the conjugate momenta? The first is

π0 =
∂L
∂Ȧ0

= 0,

since there is no Ȧ0 = φ̇ component in any of the fields, while the others are

πi =
∂L
∂Ȧi

= −Ȧi + ∂i A0 = Fi0 = Ei.

After a little algebra, we see that the Hamiltonian takes the form

H =
∫

d3x(πi Ȧi −L) =
∫

d3x
1
2
(E2 + B2)− A0(∇ · E).

In this last term, A0 (being non-dynamical) just acts like a Lagrange multiplier and sets ∇ · E = 0.
If we work in the Lorenz gauge, ∂µ Aµ = 0, the equations of motion then become

∂µ∂µA = 0.

Let us note that in this gauge, we can write a new Lagrangian with an extra term,

L = −1
4

FµνFµν − 1
2
(∂µ Aµ)2.

46separated into hypersurfaces
47everywhere the gauge freedom takes you from a given starting point, i.e. for a particular choice of Aµ, the corresponding orbit

O is O = {Aµ + ∂µλ(x) : lim|x|→∞ λ(x) = 0}
48This gauge condition is actually named for Ludvig Lorenz, and not Hendrik Lorentz of Lorentz invariance. Somewhat confusingly,

this gauge condition is Lorentz invariant, hence the confusion. See https://en.wikipedia.org/wiki/Lorenz_gauge_condition
49The operator ∂2 is like the Laplacian ∇2, but it has a time derivative in it too. In Minkowski space it takes the simple form

−∂2
t + ∂2

x + ∂2
y + ∂2

z and is known as the d’Alembert operator or the d’Alembertian, denoted by �. Of course, we might want to do
QFT in curved spacetime, so then ∂2 takes some other more complicated form.

https://en.wikipedia.org/wiki/Lorenz_gauge_condition
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Thus
∂µFµν + ∂ν(∂µ Aµ) = 0 ⇐⇒ ∂µ∂µ Aν = 0.

It will be convenient to work with this new Lagrangian and only impose ∂µ Aµ = 0 later, at the operator
level. Thus we can write a general Lagrangian as

L = −1
4

FµνFµν − 1
2α

(∂µ Aµ)2

where α = 1 is known as Feynman gauge and α = 050 is called Landau gauge.

Lecture 23.

Tuesday, November 27, 2018

The make-up lecture that was supposed to take place on Monday was cancelled, so we’ll have an extra
lecture instead on Thursday at the regular time.

Last time, we started discussing Lorenz gauge, where

∂µ Aµ = 0.

We wrote down a new Lagrangian

L = −1
4

FµνFµν − 1
2α

(∂µ Aµ)2,

noting that this new theory does not have the gauge symmetry of the original, and additionally, A0, Ai are
now all dynamical. Thus

π0 =
∂L
∂Ȧ0

= −
∂µ Aµ

α

(which is now nonzero) and

πi =
∂L
∂Ȧi

= −Ȧi + ∂i A0

as before.51

If we now apply the commutation relations

[Aµ(x), Aν(y)] = [πµ(x), πν(y)] = 0

and
[Aµ(x), πν(y)] = −iδ3(x− y)ηµν,

we can expand out the field in terms of polarization vectors ε
(λ)
µ and creation and annihilation operators

aλ
p, aλ†

p . Aµ takes the form

Aµ(x) =
∫ d3 p

(2π)3
1√
2|p|

3

∑
λ=0

(
ε
(λ)
µ (p)aλ

peip·x + ε
(λ)
µ
∗(p)aλ†

p e−ip·x
)

.

50This looks bad, I know. What we’ll see is that in the end, something sensible happens when we try to work out the photon
propagator. Really, we should think of taking the α→ 0 limit as forcing ∂muAµ → 0. In the path integral context, as α→ 0 there is an
increasingly high energy cost (i.e. an exponential damping in the factor eiS) to having any ∂µ Aµ coupling. In any case, we should first
find the photon propagator in terms of α, and then set α to zero (or one, if we’re working in Feynman gauge).

51This follows from a quick computation: computing the derivative explicitly,

∂L
∂(∂ρ Aσ)

= −Fρσ −
ηρσ∂µ Aµ

α
,

so taking ρ = 0, σ = 0 gives

π0 = −
∂µ Aµ

α
,

while taking ρ = 0, σ = i gives
πi = −F0i .
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Note that the polarization vectors have a Lorentz index µ since Aµ must transform like a vector field,

and they also have an index λ indicating which polarization we are considering. WLOG we may pick ε
(0)
µ

to be timelike and ε
(i)
µ to be spacelike, with normalization

ελ · ελ′ = ηλλ′ .

Moreover we shall choose ε
(1)
µ , ε

(2)
µ to be transverse polarizations, i.e. ε(1) · p = 0 and ε(2) · p = 0. We now

choose ε(3) to be the longitudinal polarization. For a photon traveling in the x3 direction, the momentum is
simply pµ = |p|(1, 0, 0, 1), so the polarization vectors take the simple form

ε(0) =


1
0
0
0

 , ε(1) =


0
1
0
0

 , ε(2) =


0
0
1
0

 , ε(3) =


0
0
0
1


and we can Lorentz boost or rotate to get photons traveling in other directions.

We also write the conjugate momentum in terms of creating and annihilation operators.

πµ(x) =
∫ d3 p

(2π)3

√
|p|
2

3

∑
λ=0

(
(ε(λ)(p))µaλ

peip·x − (ε(λ)(p))∗µaλ†
p e−ip·x

)
.

Now we get the following commutation relations:

[aλ
p, aλ′

q ] = [aλ†
p , aλ′†

q ] = 0

and
[aλ

p, aλ′†
q ] = −ηλλ′(2π)3δ3(p− q).

The minus sign in front of the delta function may seem okay for for λ = 1, 2, 3 but a bit strange for the
timelike polarization. Somehow, timelike γs are different.

To see why, we first define a ground state |0〉 by

aλ
p |0〉 = 0

as usual, and then the various momentum states are

|p, λ〉 = aλ†
p |0〉 .

Now, this is totally fine for λ = 1, 2, 3 but if we take λ = 0, we get

〈p, λ = 0| q, λ = 0〉 = 〈0| a0
pa0†

q |0〉 = −(2π)3δ3(p− q),

which appears to be a state of negative norm. Now, a Hilbert space with negative norm states is usually
problematic– in particular, the probabilistic interpretation of QM goes out the window. In our case, the
constraint equation comes to the rescue.

Let us switch to the Heisenberg picture and see what becomes of this polarization.
(a) Initially, we might think we could just impose the gauge condition straightforwardly, ∂µ Aµ = 0. But

if this is the case, then π0 = −∂µ Aµ = 0, so the commutation relationships cannot be obeyed (i.e. if
π0 vanishes then all its commutators are zero).

(b) We could impose a condition on Hilbert space, such that for physical states |ψ〉we have ∂µ Aµ |ψ〉 = 0.
But this is too strong. For suppose we split up Aµ into its creation and annihilation parts,

A+
µ (x) =

∫ d3 p
(2π)3

1√
2|p|

3

∑
λ=0

ε
(λ)
µ (p)aλ

peip·x

and

A−µ =
∫ d3 p

(2π)3
1√
2|p|

3

∑
λ=0

ε
(λ)
µ
∗(p)aλ†

p e−ip·x.

Then we see that ∂µ Aµ+ |0〉 = 0, which is okay, but ∂µ Aµ− |0〉 6= 0, which tells us that |0〉 is not
physical. Therefore this doesn’t work.
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(c) Finally, let us say that physical states |ψ〉 are defined by

∂µ A+µ(x) |ψ〉 = 0 (23.1)

so that 〈
ψ′
∣∣ ∂µ Aµ |ψ〉 = 0

for all physical states |ψ〉 , |ψ′〉. Eqn. 23.1 is known as the Gupta-Bleuler condition.
By the linearity of 23.1, we see that the physical states {|ψ〉} span a Hilbert space. Moreover, we can
decompose a generic state into its transverse components |ψT〉 and its timelike and longitudinal components
|φ〉:

|ψ〉 = |ψT〉 |φ〉 .

Then the Gupta-Bleuler condition requires that52

∂µ A+µ |ψ〉 = 0 ⇐⇒ (a3
k − a0

k) |φ〉 = 0.

This means that physical states contain timelike/longitudinal pairs only. That is,

|φ〉 =
∞

∑
n=0

Cn |φn〉

where n indexes over n timelike/longitudinal pairs in general.
Therefore

〈φm| φn〉 = δm0δn0,
so states with transverse-longitudinal (TL) pairs have zero norm. These zero norm states are treated as an
equivalence class– two states which differ only in the TL pairs are treated as physically equivalent.

This only makes sense if observables don’t depend on |φn〉. For example, our Hamiltonian is

H =
∫ d3 p

(2π)3 |p|
(

3

∑
i=1

ai†
p ai

p − a0†
p a0

p

)
.

Observe that the Gupta-Bleuler condition then gives us

(a3
k − a0

k) |ψ〉 = 0 =⇒ 〈ψ| a3†
p a3

p |ψ〉 = 〈ψ| a0†
p a0

p |ψ〉 .

That is, as long as timelike and longitudinal pieces cancel in the Hamiltonian H, we only get physical

contributions from transverse states (i.e.
〈

a3†
p a3

p − a0†
p a0

p

〉
= 0 for all physical states). In general this

cancellation works for any gauge-invariant operator evaluated on physical states.
Now it’s time for us to write down the photon propagator! It is

〈0| T[Aµ(x)Aν(y)] |0〉 =
∫ d4 p

(2π)4
−i

p2 + iε

[
ηµν + (α− 1)

pµ pν

p2

]
e−ip·(x−y)

for a general gauge α. Note that in Feynman gauge (α = 1), the propagator takes a particularly simple
form– we just get the −iηµν

p2+iε term. Landau gauge also gives a sensible photon propagator when we set α = 0,
as promised. One can check that if we do any physical calculation in full generality leaving the α in, there
are no αs in the final result.

Can we introduce interactions and sources into our theory? Sure we can. Let’s first write down the
Maxwell Lagrangian with a source,

L = −1
4

FµνFµν − jµ Aµ.

52This is quick to check. Schematically, A+
µ is an integral over ∑λ aλ

p. Consider a state with only timelike and longitudinal
components, i.e. |φ〉 ∼ a0†

q a3†
q |0〉. When we hit such a state with ∂µ A+µ, we get

∂µ A+µ |φ〉 ∼∑
λ

aλ
pa0†

q a3†
q |0〉 .

The a1,2
p operators will commute through and annihilate the vacuum. The a3

p operator commutes through a3†
q , picking up a

(2π)3δ(3)(p− r), while the a0
p picks up a relative minus sign, −(2π)3δ(3)(p− q), thanks to the relations [aλ

p, aλ′†
q ] = −ηλλ′ (2π)3δ3(p−

q).
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The equations of motion are ∂µFµν = jν, and we see that this implies

∂ν jν = ∂ν∂µFµν = 0

by the antisymmetry of Fµν, so jν is a conserved current. Now the Dirac Lagrangian tells us that our theory
of spin 1/2 fermions,

LD = ψ̄(i/∂ −m)ψ,

has an internal symmetry ψ → e−iαψ, ψ̄ → eiαψ̄ with α ∈ R. Applying Noether’s theorem, this yields a
current jµ = ψ̄γµψ. So we take this current from the Dirac Lagrangian and put it straight into the Maxwell
Lagrangian to couple our photon to fermions.

Doing so yields the Lagrangian for quantum electrodynamics,

LQED = −1
4

FµνFµν + ψ̄(i/∂ −m)ψ− eψ̄αγ
µ
αβ Aµψβ.

Here, α, β are spinor indices and µ is a Lorentz index. e is a coupling constant determining the strength of
the coupling of the photon to our fermion (e.g. an electron). We therefore have the kinetic terms describing
a massless spin one particle in Fµν, the Dirac kinetic terms for a massive spin 1/2 particle in ψ̄(i/∂ −m)ψ,
and a coupling term which tells us that (as we are well aware) photons and electrons can interact.

Lecture 24.

Thursday, November 29, 2018

We previously wrote down the coupling of the electromagnetic force to fermions, and said that the
theory of quantum electrodynamics (QED) is therefore given by the Lagrangian

LQED = −1
4

FµνFµν + ψ̄(i/∂ −m)ψ− eψ̄γµ Aµψ (24.1)

where we have suppressed spinor indices. Note that gauge invariance in pure electromagnetism allowed us
to get rid of the two extra degrees of freedom in the photon polarizations, leaving us with the two physical
polarization states we expect from a massless spin 1 particle. Is the same true now that we have a coupling
to fermions in LQED? Let us rewrite LQED suggestively as

LQED = −1
4

FµνFµν + ψ̄(i /D−m)ψ, (24.2)

where Dµ is the covariant derivative given by

Dµψ ≡ (∂µ + ieAµ)ψ. (24.3)

This sort of construction should look really familiar from the last few Symmetries lectures– we can reasonably
hope that our new covariant derivative Dµ will live up to its name and transform correctly under gauge
transformations.

In fact, it turns out that LQED is invariant under gauge transformations, but both the gauge field Aµ and
the spinor field ψ have to transform:

Aµ(x)→ Aµ(x) + ∂µλ(x) (24.4a)

ψ(x)→ e−ieλ(x)ψ(x) (24.4b)

ψ̄(x)→ e+ieλ(x)ψ̄(x). (24.4c)

Note that these are local symmetries, i.e. λ(x) depends explicitly on the spacetime point x! This is different
from the global symmetry, where the field is transformed everywhere in the same way (e.g. by a factor eieλ̃,
with λ̃ a constant). Let us now show that the covariant derivative transforms like the spinor field under
gauge transformations.
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Proof. By direct computation, the covariant derivative transforms as follows:

Dµψ = (∂µ + ieAµ)ψ→ (∂µ + ie(Aµ + ∂µλ(x))(e−ieλ(x)ψ)

= (−ie∂µλe−ieλψ + e−ieλ∂µψ) + (ieAµe−ieλψ + ie∂µλe−ieλψ)

= e−ieλ∂µψ + ieAµe−ieλψ

= e−ieλ(∂µieAµ)ψ = e−ieλDµψ.

Therefore the covariant derivative Dµψ transforms like the spinor field ψ. Moreover /D is the same thing up
to contraction with the gamma matrices γµ, and the gamma matrices are independent of the gauge (they
are just some representation of the Clifford algebra), so /D also transforms like ψ. �

We already checked that the Maxwell term was invariant since it only involves Aµ, so now we see that

ψ̄(i /D−m)ψ→ (eieλψ̄)(e−ieλ(i /D−m)ψ) = ψ̄(i( /D−m)ψ (24.5)

is also invariant under gauge transformations and therefore the entire QED Lagrangian is invariant, as we
claimed.

From the QED Lagrangian, we see that the coupling constant e has the interpretation of electric charge
since the equations of motion are

∂µFµν = ejν.

In pure electromagnetism, j0 was just the electric charge density, but as a quantum operator we have instead

Q = −e
∫

d3xψ̄γ0ψ

= −e
∫ d3 p

(2π)3 (b
s†
p bs

p − cs†
p cs

p)

= −e(# of particles− # of anti-particles).

Let us also note that while there is a single factor of e in our Lagrangian, actual cross-sections depend on
the squares of matrix elements and so we commonly define

α ≡ e2

4π
(24.6)

to be a factor we call the fine-structure constant, and it has a numerical value measured to be about 1/137.53

We can now discuss a similar problem, a theory with a gauge field Aµ coupling to a complex scalar φ.
For a real scalar field, there is no suitable current to couple to, but for the complex scalar, introducing a
coupling turns out to be doable. The appropriate covariant derivative is

Dµφ ≡ (∂µ − ieqAµ)φ, (24.7)

where q is the charge of the scalar φ in units of e. For instance, the sup squark (supersymmetric partner of
the up quark) has q = +2/3. Here, if the scalar field φ transforms as

φ(x)→ eieqλ(x)φ(x), (24.8)

then it follows that

Dµφ = ∂µφ− ieqAµφ→ ∂µ(eieqλφ)− ieqAµ(eieqλφ) = eieqλDµφ (24.9)

53An interesting aside from dimensional analysis. Recall that [ψ] = 3/2. Looking at the Maxwell term, we see that terms like
(∂µ Aν)2 must have mass dimension 4, so the gauge field Aµ has mass dimension [Aν] = 1 like the scalar field in the scalar Yukawa
coupling. But then if we look at the QED coupling term −eψ̄γµ Aµψ, we see that the coupling constant e must have mass dimension
zero. (Of course, the gamma matrices are just collections of numbers so they do not contribute to the overall dimension). But this
means that the fine structure constant α is itself a dimensionless number.

Now, a question– where did this value come from? It’s dimensionless, so it is independent of our unit system, but it doesn’t
appear to be an integer or any mathematically significant constant like π or e. In the words of Richard Feynman, “It has been a
mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall
and worry about it.”
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by a quick application of the Leibniz rule. Therefore the Lagrangian

L =
1
4

FµνFµν + (Dµφ)(Dµφ)† (24.10)

is gauge invariant (the dagger flips the sign on eieqλ). If we now look at the interacting part of this
Lagrangian and expand out terms a bit, we have

Lint = ieq(φ†∂µφ− (∂µφ)†φ)Aµ + e2q2 Aµ Aµφ†φ. (24.11)

This sort of Lagrangian is a good model for photons interacting with charged pions at low energies,
E . 100 MeV. At these energies, the pion “looks fundamental” to the photon, which is only sensitive
to length scales on the order of its de Broglie wavelength. In reality, the pion is made up of a quark
and anti-quark (e.g. π+ = u + d̄), and high-energy photons can “see” the component quarks with their
fractional charges.

The Lagrangian now has a conserved current

jµ = ieq[(Dµφ)†φ− φ†Dµφ]],

which is gauge invariant.
In general this process is known as minimal coupling– in order to introduce a coupling between a U(1)

gauge field and any number of fields φa (which can be fermionic or bosonic), we consider how the fields
transform under the gauge transformation and promote the partial derivatives in the kinetic terms to
covariant derivatives so that

∂µφa → Dµφa ≡ ∂muφa − ieq(a)λφa,

where λ comes from the gauge transformation Aµ → Aµ + ∂µλ.
We may also consider Feynman diagrams with some external photons in them (picture later).These

diagrams end up giving ups polarization vectors in the final scattering amplitudes, ε
(λ)
µ (k) for ingoing

photons and ε
(λ)∗
µ (k) for outgoing photons. Typically we don’t bother to resolve the polarization states (e.g.

in the detectors of colliders), so we simply average over the initial polarizations and sum over the final
polarizations. Here, λ indexes over the polarization modes, though we should keep in mind that only two
are physical (the two transverse modes).

Moreover, when we perform the sum over polarizations, we sometimes need to compute sums of the
form

∑
λ

ε
(λ)
µ (k)ε(λ)ν (k).

For instance, consider a matrix element corresponding to a diagram with one external outgoing photon
with a momentum k,

M(k) = ε
(λ)∗
µ (k)Mµ, (24.12)

where we have simply pulled out the polarization out of the matrix element M and written the rest with
some index to be contracted over as Mµ. Then the physical amplitude corresponding to this process is the
matrix element squared–

|M|2 ∝ ∑
λ

|ε(λ)∗µ (k)Mµ(k)|2

= ∑
λ

ε
(λ)∗
µ ε

(λ)
ν Mµ(k)Mν∗(k)

Now, it turns out that in QED amplitudes, we can simply replace this sum over polarizations with −ηµν.
The reason for this is as follows. WLOG, let us take the photon to be traveling in the x3 direction so that
kµ = (k, 0, 0, k) and then the transverse modes are simply

ε(1)µ = (0, 1, 0, 0)

ε(2)µ = (0, 0, 1, 0).
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Then our sum over polarizations becomes

∑
λ

|ε(λ)∗µ (k)Mµ(k)|2 = |M1(k)|2 + |M2(k)|2

= −|M0(k)|2 + |M1(k)|2 + |M2(k)|2 + |M3(k)|2

= ηµν Mµ(k)Mν∗(k),

since the timelike and longitudinal polarizations cancel.
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