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Lecture 1.

Tuesday, January 22, 2019

We begin with admin notes, as usual. The instructor for this course is David Skinner (http://www.damtp.
cam.ac.uk/people/dbs26/). The main text of this course will be Mirror Symmetry (ed. Vafa), the PDF of
which is available for free here: https://www.claymath.org/library/monographs/cmim01c.pdf.

What is SUSY and why do we care? In any quantum theory involving fermions, we can divide the Hilbert
space into a bosonic and a fermionic part,

H = HB ⊕HF, (1.1)

where the bosonic part includes an even number of fermionic excitations and the fermionic part has an odd
number of fermionic excitations.

Definition 1.2. A theory is supersymmetric if ∃ a fermionic operator Q which maps between the bosonic
and fermionic parts of the Hilbert space,

Q : HB → HF,HF → HB,
1
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such that

{Q, Q†} = 2H, Q2 = (Q†)2 = 0. (1.3)

where H is the Hamiltonian of the theory and Q† represents the adjoint of Q with respect to the inner
product on H.

This algebra has some immediate consequences:

◦ 2[H, Q] =
[
{Q, Q†}, Q

]
= (QQ† + Q†Q)Q−Q(QQ† + Q†Q). But the Q2 terms are zero by defini-

tion and the QQ†Q terms cancel. Therefore [H, Q] = 0 =⇒ Q is conserved, and the transformations
it generates will be symmetries. These symmetries are parametrized by fermionic parameters, and
are called supersymmetries. Q is known as the supercharge.
◦ For any state |ψ〉 ∈ H, the expectation value of the Hamiltonian in this state, 〈ψ|H|ψ〉, is given by

〈ψ|H|ψ〉 = 〈ψ|QQ† + Q†Q|ψ〉
= ||Q†|ψ〉||2 + ||Q|ψ〉||2 ≥ 0.

Therefore all states have non-negative energy, with equality iff the ground state |Ω〉 obeys Q|Ω〉 =
Q†|Ω〉 = 0. That is, |Ω〉 has E = 0 iff it is supersymmetric.

Why is such a theory interesting? There are a few reasons to care.

◦ Phenomenology– in the Standard Model, the coupling strength of different forces depends on the
energy scale we are interested in. The EM coupling constant α and the equivalent for QCD meet at
some energy scale, and the weak force meets these couplings at some other coupling scale. Based
on only SM particles, the unification scales are different. But adding SUSY particles could allow for
all three forces to unify at a single energy scale.
◦ Matter in the Standard Model transforms in representations of SO(1) ⊂ SU(5) ⊂ SU(3)× SU(2)×

U(1).
◦ Previously, it was thought that SUSY could address the “hierarchy problem,” i.e. why quantum

loop corrections don’t conspire to make the Higgs mass incredibly large, rather than the value it was
discovered at (∼ 125 GeV). However, the LHC has found no evidence for supersymmetric particles
in most of the configurations that would solve this problem.
◦ Most importantly for this course, SUSY helps us to better understand QFT. In quantum mechanics,

we learned about some toy models like the harmonic oscillator, the infinite square well, and the
hydrogen atom. These toy models were necessarily simplified and exhibited a lot of symmetry–
it was only later that we introduced perturbative methods to find approximate solutions to more
complicated (and more realistic) problems. But in QFT, the only exactly solvable model we’ve seen
so far is the free theory. SUSY will provide us with other QFTs in which we can compute some
quantities exactly. Moreover, these quantities often reveal connections between QFT, geometry, and
topology (cf. mirror symmetry).

This course will be more focused on the mathematical structure of supersymmetric theories rather than the
phenomenological concerns of how we might observe e.g. superpartners at colliders like the LHC.

Path integrals in QFT The path integral formalism in QFT centers around an expression which looks like∫
C

e−S[X]/h̄DX,

where X is some field and C is the space of all field configurations. We have written this path integral in
Euclidean signature; otherwise, the exponent would be −iS[X]/h̄.

However, there are some problems with this setup. This integral is not well-defined (what is the
integration measure DX?) and is formidably hard to compute. As a toy model, suppose the whole universe
is a single point, M = point (zero-dimensional QFT, if you like). Then a field on M could be X : pt→ R
and the path integral becomes ∫

R
e−S[X]/h̄dX, (1.4)
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where dX is now just the ordinary integration measure on the real line. To compute this integral, we also
need an action. Suppose we had an action of the form

S[X] =
mX2

2
+

λ

6
+

gX6

6!
. (1.5)

Since there is only one point in our spacetime, we have no way to take derivatives and therefore no kinetic
term in our action. But it turns out that even with this relatively simple-looking action, this integral

Z =
∫
R

e−S[X]/h̄dX

is still hard to do. As h̄→ 0 (the semi-classical limit), we can obtain an asymptotic series. If S[X] has an
isolated minimum at some X0 ∈ R (that is, ∂XS[X] = 0, ∂2

XS[X] > 0), then we can apply a steepest-descent
approach and say that the integral will be dominated by its value at the minimum S[X0], plus some
higher-order corrections. Thus

Z ∼h̄→0
e−S[x0]/h̄√

∂2S
∂X2 (x0)

(
1 + Ah̄ + Bh̄2 + . . .

)
, (1.6)

where the numerator e−S[X0]/h̄ represents tree-level Feynman diagrams, the denominator represents one-
loop diagrams, and the asymptotic series represents high-energy corrections. However, we should be careful
about the radius of convergence of this series. If the asymptotic series

(
1 + Ah̄ + Bh̄2 + . . .

)
converges for

h̄ > 0, it certainly must converge under sending h̄ → −h̄.1 But going back to our path integral, if h̄ < 0,
then our exponential factor e−S[X]/h̄ blows up for large actions S[X], and so this integral has no chance of
converging for any h̄ < 0, which means that our asymptotic series cannot converge as a Taylor series.

SUSY in d = 0 Let us introduce some quantities we will call Grassman variables.

Definition 1.7. Grassman variables are a set of n elements ψa obeying the algebra

ψaψb = −ψbψa. (1.8)

In particular, note that (ψa)2 = 0.

These elements might look familiar– for the fermionic spinor field in QFT, we had equal time anti-
commutation relations, {ψα(x), ψβ(y)} = 0, and similarly in general relativity we saw that the appropriate
multiplication law on one-forms was the wedge product, dxa ∧ dxb = −dxb ∧ dxa. These similarities are
not a coincidence, but it will take us some time to unravel the implications.

Now consider some operator F(ψ) which is polynomial in our Grassman variables ψa. We can write it as

F(ψ) = f + ρaψa + φabψaψb + . . . + ga1 ...an ψa1 . . . ψan . (1.9)

However, note that this expansion must terminate! Since (ψa)2 = 0, once we try to write down a term like
ψa1 . . . ψan+1 , we run out of distinct ψas to multiply together (there are only n of them) and as soon as we
get a (ψa)2, the whole term goes to zero. n.b. since ψaψb is antisymmetric by definition, we may as well
take its coefficient φab to be antisymmetric as well, φab = −φba.

If F(ψ) is bosonic (commuting), then f , φ, and the other even coefficients must also be bosonic, whereas
ρa and the other odd-ψ coefficients must be fermionic. For strings of Grassman variables, we define
derivatives by

∂

∂ψa (ψ
b . . .) = δb

a(. . .)− ψb ∂

∂ψa (. . .), (1.10)

so that derivatives must also anticommute with the Grassman variables in our version of the Leibniz rule.

1Strictly, this is because the function must converge within some disc in the complex plane. I believe this is also what allows us to
perform Wick rotations when calculating path integrals.
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Lecture 2.

Thursday, January 24, 2019

Last time, we introduced the Grassman variables. They are a set of elements which anticommute and
obey a variation of the Leibniz rule,

∂

∂ψa (ψ
b . . .) = δb

a(. . .)− ψb ∂

∂ψa (. . .).

Of course, now that we’ve defined differentiation we’d naturally like to define integration as well. Since
(ψ)2 = 0, we only need to define ∫

1 dψ and
∫

ψdψ.

We want our integral to be “translation-invariant,” i.e.∫
(ψ + η)dψ =

∫
ψdη =⇒

∫
1 dψ = 0 (2.1)

for η ∈ R. We then normalize by choosing ∫
ψdψ := 1, (2.2)

known as Berezin integration. Suppose we have n fermions ψ1, . . . , ψn, with∫
ψ1ψ2 . . . ψ2 dψndψn−1 . . . dψ1︸ ︷︷ ︸

dnψ

= 1. (2.3)

We must have the dψs in this order in order to perform each of the integrals, so that∫
ψa1 . . . ψan dnψ = εa1a2 ...an , (2.4)

with ε the totally antisymmetric ε-symbol.
Now let

ψ′a = Na
bψb for N ∈ GL(n). (2.5)

We have ∫
ψ′aψ′b . . . ψ′ddnψ = Na

eNb
f . . . Nd

g

∫
ψeψ f . . . ψgdnψ, (2.6)

where we have brought the N (n× n matrices) by the linearity of the integral– their entries are just numbers).
But indeed we can perform the integral now– it is∫

ψ′aψ′b . . . ψ′ddnψ = Na
eNb

f . . . Nd
gεe f ...g

= det(N)εab...d

= det(N)
∫

ψ′aψ′b . . . ψ′ddnψ′.

Comparing, we see that if ψ′a = Na
bψb, then

dnψ′ =
1

det(N)
dnψ, (2.7)

which is the opposite of the usual convention.

Example 2.8. If we have χ = aψ, then∫
χdχ = 1 = a

∫
ψdχ =⇒ dχ =

dψ

a
, (2.9)

recalling that
∫

ψdψ = 1.
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For QFT, we often need Gaussian integrals. Suppose ψ1, ψ2 are fermionic and let

S(ψ) =
1
2

ψ1Mψ2, (2.10)

some sort of action in terms of the fermionic fields ψ1, ψ2. There are no kinetic terms since we’re still
working in zero dimensions. Then an integral we might like to calculate is∫

e−S(ψa)dψ1dψ2. (2.11)

But in fact, this integral will be dead simple to calculate. If we Taylor expand the exponential, the expansion
actually terminates at the first non-trivial term since the order (ψ1Mψ2)2 term would contain a (ψ1)2,
which vanishes.

Therefore our integral becomes∫
e−S(ψa)dψ1dψ2 =

∫ (
(1− 1

2
ψ1Mψ2

)
dψ1dψ2 =

1
2

M. (2.12)

More generally, for 2m fermions with “action”

S(ψa) =
1
2

ψa Mabψb, (2.13)

where we shall take Mab = −Mba to be antisymmetric WLOG, our action integral becomes∫
e−S(ψ)d2mψ =

∫ ψ

∑
k=0

(−1)k

k!
1
2k

(
ψa Mabψb

)k
d2mψ

=
(−1)k

2mm!

∫ (
ψa Mabψb

)m
d2mψ

=
(−1)m

2mm!
εa1b1 ...ambm Ma1b1 Ma2b2 . . . Mambm

=
√

det M,

sometimes called the Pfaffian of the matrix M. (For “bosons,” we would have instead
∫

e−
1
2 xa Mabxb

d2mx =
(2π)m
√

det M
.)

Supersymmetric integrals and localization Consider a d = 0 theory of one bosonic variable x and two
fermions ψ1, ψ2. We certainly need at least two fermions in order to have something quadratic in the
fermions that is non-vanishing. Take

S(x, ψi) = V(x)− ψaψ2U(x) (2.14)

as our action. Our V captures some sort of interactions between bosons in our theory, and any nontrivial
terms in U will likewise result in some sort of interactions between the fermions and the boson. We see
that even in d = 0, for generic V, U the integral∫

e−S(x,ψi)dxdψ1dψ2

is difficult.
Let’s specialize and see if there’s a case we can solve. Suppose we choose a polynomial W(x) and take

S(x, ψi) =
1
2
(∂W)2 − ψ̄ψ∂2W (2.15)

where ψ = ψ1 + iψ2, ψ̄ = ψ1 − iψ2. Derivatives are clearly taken with respect to x. What we’ve done is
constructed a specific relation between the two terms in the action.

Now we observe that this action S(x, ψ, ψ̄) is invariant under

δx = εψ− ε̄ψ̄

δψ = ε̄∂W

δψ̄ = −ε∂W,
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where ε, ε̄ are fermionic parameters. This gives us variations of the right type (e.g. εψ is bosonic).
Let us check the variation of the action. We’ll just check the ε terms– the ε̄ terms are similar.

δεS = ∂W∂2Wεψ− ε∂Wψ∂2W − ψ̄ψ(εψ∂3W),

where the last term comes from taking the chain rule since W depends on x which has some variation. But
these first two terms clearly cancel (ε and W are just numbers, so they commute with fields) and the last
term is zero because we have a ψ2.

Since we have a symmetry of the action, we get some charges. We write δ = εQ + ε̄Q̄, where Q, Q̄ are
called supercharges, and

Qx = ψ Q̄x = −ψ̄

Qψ = 0 Q̄ψ = ∂W

Qψ̄ = ∂W Q̄ψ̄ = 0.

We may write

Q = ψ
∂

∂x
+ ∂W

∂

∂ψ̄

Q̄ = −ψ̄
∂

∂x
+ ∂W

∂

∂ψ
.

These generators obey {Q, Q̄} = 0. Note that there is no Hamiltonian H since the Hamiltonian is the
generator of time translations and we are still in d = 0.

Let’s observe now that the supersymmetric “path” integral
∫

e−S(x,ψ,ψ̄)dxdψdψ̄ is in fact really easy to
compute. Suppose we rescale W → λW, λ ∈ R+ both in the action, S→ Sλ and in the SUSY transformation,
Q→ Qλ, Q̄→ Q̄λ (replacing W with λW everywhere).

Now we have an action which appears to be parametrized by λ,

I(λ) =
∫

e−Sλ(x,ψ,ψ̄)dxd2ψ. (2.16)

But note that this in fact obeys dI
dλ = 0, and is therefore independent of λ.

Proof.

dI
dλ

=
∫

∂

∂λ
e−Sλ dxd2ψ

= −
∫ (

λ(∂W)2 − ψ̄ψ∂2W)
)

e−Sλ dxd2ψ

= −
∫

Q̄λ(∂Wψ)e−Sλ dxd2ψ

= −
∫

Q̄λ(∂Wψe−Sλ)dxd2ψ.

But since Q̄λ = −ψ̄ ∂
∂x + (λ∂W) ∂

∂ψ , this vanishes. The entire term in the parentheses is at most linear in
ψ, so after taking the ∂ψ derivative in Q̄, we have the integral of something constant in ψ with respect to
d2ψ, which is zero. The ∂x term vanishes because what remains is a total derivative of something being
evaluated at the boundaries. �

We conclude that

I(1) = lim
λ→∞

I(λ), (2.17)

which means that as λ→ ∞, the e−
λ2
2 (∂W)2

term suppresses the action integral everywhere except where
∂W = 0. Thus the integral localizes to critical points of W(x).
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Lecture 3.

Tuesday, January 29, 2019

Last time, we wrote down a particular action for our (zero-dimensional) theory:

S(x, ψi) =
1
2
(∂W)2 − ψ̄ψ∂2W,

with W(x) a polynomial. What we found via a scaling argument was that the integral

I =
∫

e−S(x,ψ,ψ̄dxd2ψ

in fact localizes to the critical points of W(x).
Now suppose we have a group G acting freely on our space of fields C, and suppose the action and

integration measure are G-invariant. For example,∫
R2\{0}

e−S(x,y)dxdy

with G = SO(2) and S just a function of r =
√

x2 + y2. In this case, we would recognize that by changing
to polar coordinates, we can make the angular integral trivial and just worry about an integral over dr.

More generally, we should decompose our integration domain C into the orbits of G, G× C/G, and then
integrate over G to obtain vol(G). However, if G is a fermionic group, then vol(G) = 0 since 0

∫
G 1ddim Gθ.

More generally, if G : C → C has some fixed points we can only get contributions to the integral from
neighborhoods of these fixed points.

In our case, we have
δψ = ε̄∂W, δψ̄ = −ε∂W, (3.1)

so fixed points of our SUSY theory are critical points of W(x). Away from such critical points, let us define
some new fields

y = x− ψ̄ψ

∂W
, χ = ψ

√
∂W, χ̄ = ψ̄. (3.2)

Exercise 3.3. Show that dxd2ψ =
√

∂W(y)dyd2χ, where W is considered as a function of y.

If we work this out, we find that

δy = εψ− ε̄ψ̄− ε∂Wψ

∂W
+

ψ̄ε̄∂W
∂W

= 0 (3.4)

away from critical points. Thus S(y, 0, 0) = 1
2 (∂W(y))2 − 1

2 (∂W(x))2 − ∂W∂2W ψ̄ψ
∂W = S(x, ψ, ψ̄). We con-

clude that ∫
UC

e−S(x,ψ,ψ̄)dxd2ψ =
∫

e−S(y,0,0)
√

∂W(y)dyd2χ = 0, (3.5)

where U is an open neighborhood of {∂W = 0} with UC = C \U the complement in C. This is a different
way of seeing what we computed last time– the integral localizes to (a neighborhood of) fixed points of
SUSY transformations.

Near any isolated critical point x∗, we have W(x) = W(x∗) + c∗
2 (x− x∗)2 + . . ., so our action becomes

S(2)(x, ψ, ψ̄) =
c2
∗
2
(x− x∗)2 + ψ̄ψc∗. (3.6)

Hence

I =
∫

e−S(x,ψ,ψ̄) dx√
2π

d2ψ

=
∫

e−
c2∗
2 (x−x∗)2

(−1 + ψ̄ψc∗)dxd2ψ

=
c∗√
2π

∫
R

e−
c2∗
2 (x−x∗)2

dx

=
c∗
|c∗|

= ±1.
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If W has several critical points, I = ∑c∗ |∂W(c∗)=0
c∗
|c∗ | .

This is a remarkably simplifying fact. This tells us that for each local maximum of W, we get −1 and for
each local minimum, we get −1. Thus

◦ I = 0 if W is an odd degree polynomial
◦ I = −1 if W is an even degree polynomial and W → −∞ as |x| → ∞
◦ I = +1 if W is an even degree polynomial and W → +∞ as |x| → ∞.

Whereas we might have thought that this integral a priori could have been arbitrarily hard to compute and
depend on the form of W in some complicated way, it turns out that the integral takes only three discrete
values and is determined by some sort of topological property of W.

Landau-Ginzburg theory Let’s do one more example in d = 0. Consider a complex bosonic variable z ∈ C
and two complex fermions ψ1, ψ2. Choose holomorphic W(z) with an action

S(z, ψ1, ψ2) = |∂W|2 + ∂2Wψ1ψ2 − ∂2Wψ̄1ψ2. (3.7)

We claim this is invariant under

δz = ε1ψ1 + ε2ψ2, δ̄z̄ = ε̄1ψ̄1 + ε̄2ψ̄2,

δψ1 = ε2∂W, δ̄ψ̄1 = ε̄2∂W,

δψ2 = −ε1∂W, δ̄ψ̄2 = ε̄1∂W.

We also have δ̄z = δ̄ψi = 0, δz̄ = δψ̄i = 0.
One can now check that our SUSY operators satisfy

{Qi, Q̄j} = 0,

but {Qi, Qj} = 0 = {Q̄i, Q̄j} hold only “on-shell,” i.e. for ∂2W = 0 = ∂2W. Again, by rescaling W → λW
for λ ∈ R+, we can localize our integral to critical points of W(z), where

W(z) ≈W(z∗) +
α∗
2
(z− z∗)2 + . . . (3.8)

and our integral therefore becomes

S(2)(z, ψi) ' |α∗|2|z− z∗|2 + α∗ψ1ψ2 − ᾱ∗ψ̄1ψ̄2 (3.9)

near critical points z∗. So our integral becomes

I =
1

2π

∫
e−(z,ψi)d2zd4ψ = ∑

z∗

1
2π

∫
e−|α(z−z∗)|2 |α∗|2ψ1ψ2ψ̄1ψ̄2d2zd4ψ

= ∑
z∗

|α∗|2
|α∗|2

= ∑
z∗

1,

counting (not with sign) the number of critical points {z∗} of S. More generally, let f (z) be any holomorphic
function. Then the (unnormalized) expectation value of f (z) is

〈 f (z)〉 =
∫

e−S(z,ψi) f (z)d2zd4ψ.

But this expression is still invariant under δ̄ transformations, so it again localizes to the critical points of
W̄(z̄). The expectation value of f therefore reduces to

〈 f (z)〉 = ∑
z∗

f (z∗)
1

2π

∫
e−S(2)(z,ψ1)d2zd4ψ

= ∑
z∗

f (z∗).

This relies crucially on the fact that f̄ = 0. Now since Q̄2
i = 0, one way to construct any Q̄i-invariant

function is to take Q̄i of something, e.g. Q̄iΛ(z, z̄, ψj, ψ̄k) for some general Λ.
However, if F = Q̄Λ, then the expectation value of F is

〈F〉 =
〈

Q̄Λ
〉
=
∫
(Q̄Λ)e−S d2zd4ψ

2π
=
∫

Q̄
(

Λe−S
)d2zd4ψ

2π
= 0, (3.10)
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where we have again moved e−S into the Q̄ (since it is Q̄-invariant) and observed as before that since
Q̄ ∼ ψ̄ ∂

∂z + ∂W ∂
∂ψ̄

, the second term vanishes by the Berezin integration rules and the first term is a total
derivative w.r.t z, and therefore is a vanishing boundary term.

Therefore interesting functions are in H+Q̄ = kerQ̄
imQ̄ , where kerQ̄ is the set of functions F with Q̄F = 0

and imQ̄ is the set of functions F = Q̄Λ for any function Λ. Thus we can always decompose a general
function into 〈

F + Q̄Λ
〉
= 〈F〉+

〈
Q̄Λ

〉
= 〈F〉 . (3.11)

Suppose Fi = Q̄Λ. Then 〈
n

∏
i=1

Fi

〉
=

〈
Q̄Λ

n

∏
i=1

Fi

〉
=

〈
Q̄(Λ

(
n

∏
i=1

Fi

)
)

〉
= 0. (3.12)

Lecture 4.

Thursday, January 31, 2019

Last time, we considered both the image and kernel of the operator Q̄. We remarked that some functions
will have non-trivial correlators from O ∈ HQ̄, the Q̄ cohomology. That is, we are interested in functions
that are in the kernel of Q̄ (Q̄-closed) but not in its image (Q̄-exact).

For example, the transform δ̄ψ̄i = ε̄i∂W shows that ∂W is itself Q̄ of something, i.e. in the image. Thus if
our operators Oi contain ∂W as a factor, their correlator vanishes, e.g. if

W(z) =
zn+1

n + 1
− az, ∂W = zn − a (4.1)

, then we have non-trivial Q̄-invariant operators that are polynomials subject to the condition that zn = a.
This tells us that these operators form a ring generated by the set of functions {1, z, z2, . . . , zn−1}. The ring
of non-trivial SUSY operators is often called the chiral ring (chiral because we’ve made a choice of Q̄ or Q).

Supersymmetric quantum mechanics There are (at least) two perspectives on QM: the canonical frame-
work (with operators, states, wavefunctions) and the path integral framework. Today we will stay in the
canonical framework and see what SUSY can teach us about quantum mechanics.

Take a worldline theory of a single bosonic field x(t) and a single complex fermion ψ(t) (plus its
conjugate ψ̄). We choose the action

S[x, ψ, ψ̄] =
∫ [1

2
ẋ2 +

i
2
(ψ̄ψ̇− ˙̄ψψ)− 1

2
(∂h)2 − ψ̄ψ∂2h

]
dt, (4.2)

with h = h(x(t)) some potential function along the worldline as before. Now that we have one dimension,
we have some kinetic terms in our action.

Now, this action S[x, ψ, ψ̄] is invariant under SUSY transformations

δx = εψ̄− ε̄ψ (4.3)

δψ = ε(iẋ + ∂h) (4.4)

δψ̄ = ε̄(−iẋ + ∂h). (4.5)

We’ll defer a discussion of where these transformations actually come from to when we talk about
superfields. For now, we’ll just take it for granted that we can write down such transformations, and note
that we should check explicitly the action is indeed invariant under this set of variations.

By the Noether procedure, promoting ε→ ε(t), we find that

δS = −i
∫
(ε̇Q + ˙̄εQ̄)dt, (4.6)

where the charges
Q = ψ̄(iẋ + ∂h), Q̄ = ψ(−iẋ + ∂h) (4.7)
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obey the following algebra:

{Q, Q̄}x = (QQ̄ + Q̄Q)x

= −Qψ + Q̄ψ̄

= −(iẋ + ∂h) + (−iẋ + ∂h)
= −2iẋ,

and

{Q, Q̄}ψ = Q̄(iẋ + ∂h) (4.8)

= −iψ̇− ψ∂2h (4.9)

' −2iψ̇ (4.10)

after applying the equation of motion ψ̇ = −iψ∂2h. Similarly,

{Q, Q̄} = ψ̄ ' −2i ˙̄ψ. (4.11)

Thus up to the fermionic equations of motion, the anticommutator of the supercharges generates time
translations and so must be ∝ H the Hamiltonian.

To canonically quantize, we have

p =
δL
δẋ

= ẋ, π =
δL
δψ̇

= iψ̄. (4.12)

Making the appropriate substitutions, we have a Hamiltonian

H = pẋ + πψ̇− L =
1
2

p2 + (∂h)2 +
1
2

∂2h(ψ̄ψ− ψψ̄). (4.13)

Note that classically, we could have just anticommuted ψ̄ and ψ to get rid of the factor of 1/2, but after
quantization we will have to be more careful about ordering ambiguities. Upon quantization (in units
where h̄ = 1), we impose canonical commutation relations,

[x, p] = i, {ψ, ψ̄} = 1. (4.14)

For x, as usual we shall take it to lie in the Hilbert space H = L2(R, dx), the space of square-integrable
functions of a real variable, in which case

x̂Ψ(x) = xΨ(x)

and

p̂Ψ(x) = −i
∂Ψ
∂x

.

The relations {ψ̂, ˆ̄ψ} = 1 are now reminiscent of [a, a†] = 1, the relation for the raising and lowering
operators of the harmonic oscillator. In analogy to the harmonic oscillator, let’s therefore define a fermionic
number operator

F̂ = ˆ̄ψψ̂. (4.15)

Since F̂ is the product of two fermionic operators, it is a bosonic operator, and we can then compute
immediately that

[F̂, ψ̂] = −ψ̂, [F̂, ˆ̄ψ] = + ˆ̄ψ. (4.16)
We also let the vacuum of the fermionic system be the state |0〉, defined by

ψ̂|0〉 = 0. (4.17)

The first excited state is naturally
ˆ̄ψ|0〉 = |1〉.

However, since { ˆ̄ψ, ˆ̄ψ} = 0 (i.e. ˆ̄ψ2 = 0), there are no further excited states. Hence the Hilbert space of the
fermionic states is limited to these two states (up to a phase, of course) and the entire Hilbert space of the
system is therefore

H = L2(R, dx)|0〉 ⊕ L2(R, dx)|1〉. (4.18)
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We can equivalently write this as the sum

H = HB ⊕HF,

a bosonic part and a fermionic part. In the quantum theory, our SUSY operators become

Q̂ = ˆ̄ψ(i p̂ + ∂h), ˆ̄Q = ψ̂(−i p̂ + ∂h). (4.19)

The quantum Hamiltonian is

Ĥ =
1
2

p̂2 + (∂h)2 +
1
2

∂2h( ˆ̄ψψ̂− ψ̂ ˆ̄ψ). (4.20)

Dropping hats (so that everything is an operator by assumption), we have immediately

{Q, Q} = {Q̄, Q̄} = 0. (4.21)

However, the anticommutator of Q and Q̄ is nontrivial. In fact,

{Q, Q̄} = 2H, (4.22)

which we leave as an exercise. This is why we made the choice of the particular ordering in defining H.
This is the quantum analogue of the statement that the anticommutator of Q and Q̄ gave us time translation
in our classical variables. In the quantum theory, they yield the Hamiltonian.

Supersymmetric ground states As before, 〈Ψ|H|Ψ〉 ≥ 0, with equality iff Q|Ψ〉 = 0 and Q̄|Ψ〉 = 0.
Therefore a state of zero energy in super-quantum mechanics (SQM) must be SUSY invariant and will then
be a ground state.

If we represent the fermionic vacuum |0〉 →
(

1
0

)
and the excited state |1〉 →

(
0
1

)
, then we can write

the conditions on the operators Q|Ψ〉 = 0, Q̄|Ψ〉 = 0 in a matrix representation,(
0 0

d
dx + ∂h 0

)(
f (x)
g(x)

)
= 0,

(
0 − d

dx + ∂h
0 0

)(
f (x)
g(x)

)
= 0. (4.23)

Solving, we learn that our ground state must be of the form

|Ψ〉 =
(

Ae−h(x)

Be+h(x)

)
. (4.24)

We want a normalizable solution, so we must set at least one of A, B to zero. This depends on the asyptotic
behavior of h(x):

◦ if h(x)→|x|→∞ +∞ then the SUSY ground state is
(

Ae−h(x)

0

)
.

◦ if h(x)→|x|→∞ −∞ then the SUSY ground state is
(

0
Be+h(x)

)
.

◦ if h(x)→x→+∞ ±∞ and h(x)→x→−∞ ∓∞, then neither solution will be square-integrable, so there
is no zero energy state. The ground state will have nonzero energy and SUSY is spontaneously broken.

Lecture 5.

Tuesday, February 5, 2019

Recall that we have non-negative energy states in SUSY since

〈Ψ|H|Ψ〉 = ||Q|Ψ〉||2 + ||Q̄|Ψ〉||2 ≥ 0.

Thus we argued that the supersymmetric ground states must be annihilated by both Q and Q̄, and are
either e−h(x)|0〉 or e+h(x)|1〉 if h(x) is a polynomial of even degree, and no SUSY ground state exists if h(x)
is of odd degree.

Meanwhile, excited states in our theory, E > 0, come in pairs. If H =
⊕Hn, where H|Ψn〉 =

En|Ψn〉 ∀|Ψn〉 ∈ Hn, then we can further split each of the Hilbert spaces Hn = HB,n ⊕HF,n into bosonic
and fermionic parts. In particular Q : Hn,F → Hn,B (since [Q, H] = 0) and annihilates Hn,B. Thus given
|b〉 ∈ Hn,B a bosonic state at energy level n, we have

2En|b〉 = (QQ̄ + Q̄Q)|b〉 = Q(Q̄|b〉). (5.1)
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For En > 0, the RHS of this equation cannot be zero, so

|b〉 = 1
2En

QQ̄|b〉 = Q| f 〉 (5.2)

where

| f 〉 ≡ Q̄|b〉
2En

∈ Hn,F. (5.3)

That is, a bosonic state is Q of something (namely, a fermionic state). Similarly, any state in Hn,F with n > 0
can be written as Q̄|g〉 for some |g〉 ∈ Hn,B. Thus

Hn,B ∼= Hn,F when n > 0 (5.4)

and each excited state comes in pairs, with a bosonic and fermionic partner.

Definition 5.5. We define the Witten index to be the difference between the number of fermionic and bosonic
ground states,

IW = dimH0,B − dimH0,F = TrH(−1)F = TrH
(
(−1)Fe−βH

)
, (5.6)

where the last two expressions follow because excited states come in pairs and F is the eigenvalue of the
fermionic number operator.

Note the final expression is independent of β. One may ask why we add on this e−βH factor if (−1)F

already counts the Witten index properly. One reason is to regularize the trace– while it is true that the
excited states do come in pairs, the trace may be a bit ill-defined if the terms we are adding do not go to
zero. Another reason is to make a connection to the path integral.

Path integrals in QM Consider a particle traveling on R. The time evolution operator e−iHt becomes e−Hτ

under a Wick rotation (i.e. imaginary time) tMink → iτ. If our particle is at y0 at τ = 0, the amplitude to
find it at y1 at some later time τ = β is

〈y1|e−βH |y0〉 = Kβ(y1, y0) =
1√
2πβ

exp
(
− (y0 − y1)

2

2β

)
. (5.7)

This is sometimes known as the heat kernel. If we break this evolution in to steps of length ∆τ = β/N, we
can rewrite the heat kernel as an integral over complete sets of states,

〈y1|e−βH |y0〉 =
∫
〈y1|e−∆τH |xN−1〉〈xN−1|e−∆τH |xN−2〉 . . . 〈x2|e−∆τH |x1〉〈x1|e−∆τH |y0〉dN−1x. (5.8)

However, this is none other than a set of heat kernels:

〈y1|e−βH |y0〉 =
∫

K∆τ(y1, xN−1) . . . K∆τ(x2, x1)K∆τ(x1, y0)dN−1x

=
1√

2π∆τ

∫
exp

[
−

n

∑
i=0

∆τ

2

(
xi+1 − xi

∆τ

)2
]

N−1

∏
i=1

dxi√
2π∆τ

.

Taking the limit ∆τ → 0, N → ∞ with fixed β, we define

exp
(
−
∫ β

0

1
2

ẋ2dτ

)
Dx ≡ lim

∆τ→0,N→∞
∏

i

dxi√
2π∆τ

exp

[
−∆τ

2 ∑
i

(
x− i + 1− xi

∆τ

)2
]

, (5.9)

where we (heuristically) obtain the path integral representation

〈y1|e−βH |y0〉 =
∫
C[y1,y0]

e−
∫ β

0
1
2 ẋ2dτDx, (5.10)

where C[y1, y0] is the space of continuous maps x : [0, β]→ R s.t. x(0) = y0, x(β) = y1. We can also show

that this derivation works for a Hamiltonian with a potential, H = p2

2 + V(x) in which case the action

becomes S =
∫ [ 1

2 ẋ2 + V(x)
]
dτ.
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Now, the partition function Z(β) is closely related to the heat kernel:

Z(β) = TrH(e−βH) =
∫
R
〈y|e−βH |y〉dy (5.11)

=
∫ [∫

C[y, y]e−S[x]Dx
]

dy (5.12)

=
∫
CS1

e−S[x]Dx, (5.13)

where we consider continuous maps x : S1 → R since the start and endpoints are the same y.

Path integrals for fermions We have fermionic coherent states defined analogous to the harmonic oscillator
coherent states, as

|η〉 = e
ˆ̄ψη |0〉, (5.14)

where η is just a number and the chief property of such a state is that it is an eigenstate of the lowering
operator, ψ̂|η〉 = η|η〉. These obey

1H =
∫

e−η̄η |η̄〉〈η|d2η (5.15)

and
Tr(Â) =

∫
〈−η̄|Â|η〉e−η̄ηd2η, (5.16)

such that the supertrace (i.e. a modified trace which accounts for fermionic and bosonic parts of the Hilbert
space) obeys

STr(A) = TrH((−1)F A) =
∫
〈η̄|Â|η〉e−η̄ηd2η. (5.17)

Using these and following the same procedure as for bosons, we can define a heat kernel on fermions. For
eigenstates |χ〉, |χ̄′〉, we have

〈χ̄′|e−βH |χ〉 =
∫

¯̄ ′χe−∆τH |ηN−1〉〈η̄N−1|e−∆τH |ηN−2〉 . . . 〈η̄n|e−∆τH |η1〉〈η̄1|e−∆τH |χ〉
N−1

∏
k=1

e−η̄kηk d2ηk.

Let’s now order the Hamiltonian (using commutators if necessary) so that all ψ̂s appear to the right of all
ˆ̄ψs (sort of like normal ordering). Take one of these heat kernel factors. In the limit as ∆τ → 0, we only

need the first-order term in the exponential,

〈η̄k+1|e−∆τH( ˆ̄ψ,ψ̂)|ηk〉 = 〈η̄k+1|1− ∆τH( ˆ̄ψ, ψ̂)|ηk〉
= 〈η̄k+1|1− ∆τH(η̄k+1, ηk)|ηk〉

= e−∆τH(η̄k+1,ηk)〈η̄k+1|ηk〉

= e−∆τH(η̄k+1,ηk)e+η̄k+1ηk .

Using this, we can evaluate our fermionic heat kernel. It is

〈χ̄′|e−βH |χ〉 = lim
N→∞,∆τ→0

∫
exp

(
N

∑
k=1

η̄kηk−1 − ∆τH(η̄k, ηk−1)

)
N−1

∏
k=1

e−η̄kηk d2ηk (5.18)

= lim
N→∞,∆τ→0

∫
exp

(
−

N

∑
k=1

[
η̄k

(ηk − ηk−1)

∆τ
− H(η̄k, ηk−1)

]
∆τ

)
eη̄N ηN

N−1

∏
k=1

d2ηk, (5.19)

where this extra factor eη̄N ηN has come from us rewriting the exponent in to look more like a discretized
derivative of η.

Therefore
〈χ̄′|e−βH |χ〉 =

∫
e−S[η̄,η]eη̄(β)η(β)DηDη̄ (5.20)

where η(0) = χ, η(β) = χ̄′ and S[η̄, η] is the action
∫ β

0 η̄η̇ − H(η̄, η). When we compute the partition
function, we find that

Z(β) = TrH(e−βH) =
∫
〈−χ̄|e−βH |χ〉e−χ̄χd2χ = exp(−S[ψ̄, ψ])DψDψ̄ (5.21)
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where we now have antiperiodic boundary conditions, ψ(τ + β) = −ψ(τ). Equivalently to the bosonic case
we have a supertrace

STr(e−βH) = Tr((−1)Fe−βH) =
∫
〈χ̄|e−βH |χ〉e−χ̄χd2χ

=
∫

e−S[ψ̄,ψ]DψDψ̄

with periodic boundary conditions.

Lecture 6.

Thursday, February 7, 2019

Last time, we defined the Witten index as the difference between the number of fermionic and bosonic
ground states, and we wrote it in terms of a “supertrace” over (Boltzmann-like) factors STr(e−βH). We
found that it admitted a path integral expression,

IW =
∫

periodic
e−SE [x,ψ,ψ̄]DxDψDψ̄, (6.1)

where SE is the Euclidean action

SE =
∮ [1

2
ẋ2 + ψ̄ψ̇ +

1
2
(∂h)2 + ∂2hψ̄ψ

]
dτ (6.2)

where dots now indicate d/dτ (i.e. with respect to Euclidean time). Note this action is invariant under the
SUSY transformations

δx = εψ̄− ε̄ψ (6.3)

δψ = ε(−ẋ + ∂h) (6.4)

δψ̄ = ε̄(ẋ + ∂h). (6.5)

Note that these transformations only make sense globally on S1 since (x, ψ, ψ̄) are all periodic and ε, ε̄ are
all constants. If we try to make this a local transformation, allowing ε(τ + 2π) = −ε(τ) requires that we
gauge these transforms, which leads to supergravity.

Let’s now compute the Witten index IW using the path integral. As in d = 0, we shall consider rescaling
h→ λh for λ ∈ R+, and we expect that IW is actually independent of this rescaling. Let’s see this explicitly:

d
dλ

IW(λ) = −
∫

P

[∮
S1

λ(∂h)2 + ∂2hψ̄ψ

]
e−SE [x,ψ̄,ψ]DxDψDψ̄.

However, note that

Qλ(
∮

∂hψ dτ) =
∮ [

∂2hψ̄ψ + λ(∂h)2 − ∂h
dx
dτ

]
dτ

=
∮

S1
λ(∂h)2 + ψ̄ψ∂2h dτ −

∮
S1

dh.

But this last term is zero since it is a total derivative integrated around a closed loop. Therefore this
insertion is Qλ-exact, and we conclude that

dIW(λ)

dλ
= 0, (6.6)

as expected from the canonical calculation. In particular, as λ→ ∞ the term exp
(
− λ2

2

∮
(∂h)2dτ

)
suppresses

all maps x : S1 → R except in a neighborhood of constant maps to critical points of h.
Near such critical points, we may expand x(τ) = x∗ + δx(τ) so that to quadratic order,

S(2)
E =

∮ 1
2

δx
(
− d2

dτ2 + h′′(x∗)2
)

δx + ψ̄

(
d

dτ
+ h′′(x∗)

)
ψdτ. (6.7)
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Since δx(τ) and the fermions ψ, ψ̄ must each be periodic, we can expand them as Fourier series,

δx(τ) ∑
n∈Z

δxn exp
(

2πinτ

β

)
, ψ(τ) = ∑

n∈Z
ψn exp

(
2πinτ

β

)
(6.8)

where the ψn are Grassmann quantities, as they must be, and δx−n = (δxn)∗ since δx(τ) ∈ R. We now find
near a critical point x∗ that we can explicitly perform the path integral:∫

e−S(2)
E DδxDψDψ̄ =

det(∂τ + h′′(x∗))√
det(−∂2

τ + h′′(x∗)2
(6.9)

=
∏n∈Z(2πin/β + h′′(x∗))√

∏n∈Z
(
(2πn/β)2 + h′′(x∗)2

) . (6.10)

But because we observed that the Fourier modes are paired up by δx−n = (δxn)∗, only the n = 0 terms will
not cancel. We find that a single critical point therefore has∫

e−S(2)
E DδxDψDψ̄ =

h′′(x∗)
|h′′(x∗)|

(6.11)

or summing over critical points,

IW = ∑
x∗ :∂h(x∗)=0

h′′(x∗)
|h′′(x∗)|

. (6.12)

This agrees precisely with our notion that the Witten index counts a topological property of h, namely the
net number of critical points (counting h′′ > 0 as 1 and h′′ < 0 as −1).

Non-linear sigma models In the bosonic case, we let our field describe a map x : M → N from our
worldline M([0, β], S1) to a compact Riemannian manifold (N, g). Often we let xa be coordinates on some
subset U ⊂ N, and xa(τ) be the corresponding fields where a = 1, . . . , n = dim(N).

We choose the following action

S[x] =
∫

M

1
2

gab(x)ẋa ẋb dτ. (6.13)

Note that this metric gab(x) generically depends on x(τ), so this is an interacting (worldline) QFT. That is,
the zeroth order behavior would be a simple kinetic term, but we expect nonlinear corrections. Varying this
action S[x], we get

δS =
∫

M

[
gab(x)ẋa dδxb

dτ
+

1
2

∂cgab ẋa ẋbδxc

]
dτ (6.14)

=
∫ [
− d

dτ
(gac ẋa +

1
2

∂cgab ẋa ẋb)

]
δxcdτ + gab(x)ẋaδxb|∂M. (6.15)

However, notice that the equations of motion are the geodesic equations

d2xa

dτ2 + Γa
bc ẋb ẋc = 0, (6.16)

where Γ is the Levi-Civita connection on (N, g). This is a nice classical result. Can we make it quantum?
To quantize, notice that

pa =
δL
δẋa = gab ẋb, (6.17)

so we get canonical commutation relations

[x̂a, p̂b] = iδa
b.

We can moreover choose the Hilbert space to be H = L2(N,
√

gdnx), square integrable functions under the
standard Riemannian volume element

√
gdnx on the manifold N.
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We appear to have constructed a theory of a free particle moving on a curved manifold. However, there’s
no preferred choice of Hamiltonian when we quantize. Classically, we have (as usual)

H = pa ẋa − L =
1
2

gab(x)pa pb, (6.18)

but there’s an ordering ambiguity when we turn this into a quantum operator because our metric depends
on x.

We can start to address this by reasonably requiring the following:

◦ Ĥ should be generally covariant.

◦ Ĥ should reduce to − 1
2

p2

∂x2 in the case (N, g) = (Rn, dnx).
◦ Ĥ should contain no more than two derivatives acting either on the wavefunction Ψ ∈ H or g.

In fact, there’s a 1-parameter family of such Ĥs given by

Ĥ = −1
2

(
1
√

g
∂

∂xa

(
gab√g

∂

∂xb

)
+ αR[g]

)
(6.19)

for α ∈ R, where R[g] is the Ricci scalar corresponding to the metric on our target space.
Beyond this, there is no preferred choice of α, and different regularizations of the path integral will give

different values of α. To do better, we need to supersymmetrize this worldline model, and we’ll do this
next week.

Lecture 7.

Tuesday, February 12, 2019

A quick bit of admin– office hours are rescheduled to tomorrow (February 13) from 2-4 PM.
Last time, we wrote down a 1-parameter family of Hamiltonians

Ĥ = −1
2

(
1
√

g
∂

∂xa

(
gab√g

∂

∂xb

)
+ αR[g]

)
,

where this first term is none other than − 1
2∇a∇a, a covariant Laplacian. However, we also get this extra

term– we get a bit of coupling to the Ricci scalar which we’re free to choose.

Supersymmetric NLSM As always, our goal will be to supersymmetrize the model and see what we learn.
Take a bosonic variable x and fermionic variable ψa such that

x : M→ N, ψa ∈∏ Ω0(M, x∗TN) (7.1)

where N is some target Riemannian manifold (N, g), M is something like an interval [0, β] or S1, and Ω0 is
a function on the worldline.

With these variables, we can write down an action

S[x, ψ] =
∫

M

[
1
2

gab ẋa ẋb + igabψ̄a(∇tψ)
b − 1

2
Rabcdψaψ̄bψcψ̄c

]
dt (7.2)

where ∇tψ
a = dψa

dt + Γa
bc

dxb

dt ψc is the pullback of the connection on N. This first term is just our bosonic
kinetic term, and the second is a reasonable sort of fermionic kinetic term, but the last is a bit of a surprise.
The fermions couple directly to the Riemann curvature of the target space N.

Note that this action is invariant under the SUSY transformations

δxa = εψ̄a − ε̄ψa (7.3)

δψa = ε(iẋa − Γa
bcψ̄bψc) (7.4)

δψ̄a = ε̄(−iẋa − Γa
bcψ̄bψc), (7.5)

which we can check explicitly (e.g. on the second examples sheet). As before, the origin of these
transformations may seem a bit mysterious but will become clearer when we discuss superfields.
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These transformations are generated by the Noether charges Q, Q̄, where

Q = iψ̄a(gab ẋb + igbcψ̄bΓc
adψd), (7.6)

Q̄ = −iψa(gab ẋb + igbcψbΓc
adψ̄d). (7.7)

Our action is also invariant under the (considerably simpler) transformation ψa 7→ eiαψa, ψ̄a 7→ e−iαψ̄a,
generated by the charge F = gabψaψ̄b. Conservation of F in the quantum theory tells us that no fermionic
excitations are created or destroyed by time evolution.

Quantizing this theory, we have the conjugate momenta

pa =
δL
δẋa = gab ẋb + igbcψ̄bΓc

adψd; πa =
δL
δψ̇a = igabψ̄b. (7.8)

These have canonical (anti)commutation relations

[x̂a, p̂b] = iδa
b, {ψ̂a, ˆ̄ψb} = gab(x), (7.9)

with all others trivial. For the bosonic fields, we choose the Hilbert space

H = L2(N,
√

gdnx),

with p̂a → −i ∂
∂xa . For the fermions, we again choose ψ̄a to be raising operators and ψa lowering operators.

If we then pick a vacuum |0〉 defined by ψa|0〉 = 0∀a, all other states of the fermionic system are generated
by acting with the ψ̄s on |0〉.

Notice that each ψ̄a can only act once, since {ψ̄a, ψ̄b} = 0. This is because our whole universe is just an
interval (remember, M = [0, β] or S1), so rather than having Fourier modes defined on a time slice, we have
different fields defined at points. This enforces the Pauli exclusion principle, if you like. However, we do
get different fermions since we have an index ψ̄a to range over. We can interpret these as forms on N: thus

|0〉 ↔ 1 (7.10)

ψ̄a|0〉 ↔ dxa (7.11)

ψ̄aψ̄b|0〉 ↔ dxa ∧ dxb (7.12)

ψ̄a . . . ψ̄n|0〉 ↔ dx1 ∧ dx2 ∧ . . . ∧ dxn. (7.13)

There are no more since any (ψ̄a)2 = 0.
Altogether, the Hilbert space of SUSY QM is thenrefore

H = Ω·(N) =
n⊕

p=0
Ωp(N) (7.14)

where Ωp(N) is the space of p-forms on N, i.e. a general state Ψ(x, ψ̄) can be written as

Ψ(x, ψ̄) = f (x) + αa(x)ψ̄a + βab(x)ψ̄aψ̄b + . . . + ω1...n(x)ψ̄1 . . . ψ̄n (7.15)

∼ f (x) + αadxa + βabdxa ∧ dxb + . . . + ωdxa ∧ . . . ∧ dxn. (7.16)

So there is a direct correspondence between expanding in ψ̄ operators and in terms of differential forms.
Acting on this space, we can set up the full correspondence

x̂a → xa × (·)

p̂a → −i
∂

∂xa (·)

ψ̄a → dxa ∧ (·)

ψa → gab ∂

∂xb (·) (contraction).
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Thus when we hit some arbitrary state ψ̄aψ̄bψ̄c . . . ψ̄d|0〉 with a lowering operator (where there are an odd
number of ψ̄s), we can use the anticommutation relations to find

ψe(ψ̄aψ̄bψ̄c . . . ψ̄d|0〉) = {ψe, ψ̄aψ̄b . . . ψ̄d}|0〉

=
(
{ψe, ψ̄a}ψ̄b . . . ψ̄d − ψ̄a{ψe, ψ̄b}ψ̄c . . . ψ̄d + . . . + ψ̄aψ̄b . . . {ψe, ψ̄d}

)
|0〉

=
(

geaψ̄b . . . ψ̄d − gebψ̄aψ̄c . . . ψ̄d + . . . + gedψ̄aψ̄b . . .
)
|0〉.

But notice this is just what we would have gotten from contracting

ιge f ∂

∂x f (dxa ∧ dxb . . . ∧ dxd). (7.17)

The inner product on H is

〈α|β〉 =
∫

N
α ∧ ∗β, (7.18)

where ∗ is the Hodge star operator.2 Here, if α, β ∈ Ωp(N) (p-forms on N), then∫
N

α ∧ ∗β =
∫

N
αa1 ...ap βa1 ...ap

√
g, (7.19)

with indices raised using gab. For α ∈ Ωp(N), β 6∈ Ωp(N), we simply define
∫

N α ∧ ∗β = 0. This follows
since ψa is the adjoint of ψ̄a, so∫

N
αa1 ...ap(x)βb1 ...bp(x)

√
gdnx 〈0|ψa1 . . . ψap︸ ︷︷ ︸

fermionic part of 〈α|

ψ̄b1 . . . ψ̄bp |0〉︸ ︷︷ ︸
fermionic part of |β〉

=
∫

N
αa1 ...ap βa1 ...ap

√
gdnx. (7.20)

We see that the integral vanishes unless we precisely match the indices between α and β.
Furthermore, in the quantum theory we get

Q = iψ̄a p̂a → dxa ∂

∂xa = d, (7.21)

where d is now the exterior derivative, taking us from Ωp(N)→ Ωp+1(N), from p-forms to p + 1-forms.
Similarly,

Q̄ = −iψa p̂a → d†, (7.22)

where d† is the adjoint with respect to the inner product 〈, 〉 which takes us from Ωp(N)→ Ωp−1(N), from
p to p− 1-forms, such that if α ∈ Ωp, β ∈ Ωp+1, then

〈
α, d†β

〉
= 〈dα, β〉 .

Lecture 8.

Thursday, February 14, 2019

We’ve been looking at supersymmetric nonlinear sigma models. Previously, our fields were maps from
x : M→ N where M was a worldline and N was some target space, a Riemannian manifold with a metric
g. But it’s clear that M could be some bigger manifold, in general “our universe.”

We said the Hilbert space for our theory was

H = Hx ⊗Hψ = Ω·(N,C), (8.1)

the space of differential forms up to p-forms on N equipped with inner product

〈α|β〉 =
∫

N
ᾱ ∧ ∗β, (8.2)

where ∗ is the Hodge star operator taking Ωp(N)→ Ωn−p(N). Explicitly, if

ω = ωa1a2 ...ap dxa1 ∧ dxa2 ∧ . . . ∧ dxap ,

2No, we didn’t learn enough of this differential geometry in General Relativity. Blame Malcolm Perry. I direct you to Harvey Reall’s
GR notes and/or Sean Carroll’s excellent textbook Spacetime and Geometry as a reference.
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then ∗ω is given by

∗ω =

√
g

(n− p)!
εa1 ...ap

bp+1 ...bn ωa1 ...ap dxbp+1 ∧ . . . ∧ dxbn ,

with indices raised by the inverse metric. We saw that our SUSY operator Q then has the geometric
interpretation of an exterior derivative,

Q̂ = i ˆ̄ψa p̂a ↔ d, (8.3)

and similarly ˆ̄Q has the interpretation of the adjoint of the exterior derivative,

ˆ̄Q = −iψ̂a p̂a ↔ d†, (8.4)

where
〈
α, d†β

〉
= 〈dα, β〉.

We can now fix the ordering ambiguity in |hatH by demanding the SUSY algebra

2Ĥ = {Q̂, ˆ̄Q} (8.5)

still holds in the quantum theory. This fixes

H =
1
2
(d†d + dd†) = −1

2
∆, (8.6)

where ∆ is the Laplacian acting on forms. Since d : Ωp → Ωp+1, d† : Ωp → Ωp−1, it follows that
−∆ = d†d + dd† : Ωp → Ωp.

To see this concretely, when acting on a function f ∈ Ω0(N) (i.e. a zero-form), d† simply annihilates the
function (since there are no −1-forms) so we get

−∆ f = d†d f

= d†(∂a f dxa)

= ∗d(∗d f )

= ∗d

 √
g

(n− 1)!
gab∂a f εbc...d dxc ∧ . . . ∧ dxd︸ ︷︷ ︸

n−1


=

∗
(n− 1)!

∂m(
√

ggab∂a f )εbc...d dxm ∧ dxc ∧ . . . ∧ dxd︸ ︷︷ ︸
n

.

But we see that there are now n one-forms being wedged together, which means we must have all the dx1

through dxn in some order. We can rewrite this as a totally antisymmetric tensor, with a factor of 1/g the
determinant of the metric. Using this fact, our expression becomes

−∆ f =
1
g

∂b(gab√g∂a f ) ∗ (dx1 ∧ . . . ∧ dxn)

= − 1
√

g
∂a(
√

ggab∂b f ).

What we learn is that the generalized Laplacian acting on forms reduces to the ordinary Laplacian with
respect to the metric when acting on functions.

However, we now observe that acting on any form ω,

2〈ω|Ĥ|ω〉 = 〈ω|dd†ω〉+ 〈ω|d†dω〉
= ||d†ω||2 + ||dω||2 ≥ 0.

A form which has equality here, ∆ω = 0, is said to be harmonic. Therefore supersymmetric ground states
are in 1 : 1 correspondence with Harm·(N) = ⊕n

p=0Harmp(N), the space of harmonic 0- through p-forms
on N. Notice that any form ω ∈ Harmp must be closed (dω = 0) and co-closed (d†ω = 0).

Theorem 8.7 (Hodge’s theorem). The space of harmonic p-forms on N is in correspondence with the de Rham
p-cohomology group,

Harmp(N) ∼= Hp
dR(N) (8.8)
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where

Hp
dR(N) = {ω ∈ Ωp(N) s.t. dω = 0}/{ω = dα} = ker(d : Ωp → Ωp+1)/im(d : Ωp−1 → Ωp). (8.9)

In de Rham cohomology, ω is specified up to ω ∼ ω + dα (i.e. we only care about ω up to the addition
of some exact dα). The role of the co-closure condition, d†ω = 0, is to select a unique representative. If
dω = d†ω = 0, then we our freedom becomes ω ∼ ω + dα where d†dα = 0, and the only solutions are
α = 0.3 Thus the space of SUSY ground states is ∼= H·dR(N).

Thinking back to our discussion of the Witten index, we see that

IW = Tr((−1)Fe−βH) = nB − nF =
n

∑
p=0

(−1)p dim(Hp
dR(N)). (8.10)

But this is very interesting because this final expression is precisely χ(N), the Euler character of N. Thus the
space of SUSY ground states has a close relation to some topological information about the space our states
live in.

To motivate de Rham cohomology a bit more, suppose Cp is a p-cycle in N without boundary. Stokes’s
Theorem in the vector calculus language says that∫

S
(∇×A) · dS =

∮
C

A · dl.

But we can generalize this to p-forms: ∫
Dp+1

dω =
∫

Cp
ω (8.11)

if ∂Dp+1 = Cp. That is, we can relate the integral in some region Dp+1 to the value of the form integrated
over the boundary Cp. However, if ω ∈ Hp

dR, then dω = 0 =⇒
∫

ω = 0 if Cp is the boundary of some
Dp+1.

Furthermore, ∫
Cp

ω + dα =
∫

Dp+1

dω +
∫

Dp+1

d2α, (8.12)

where this second term vanishes since d is nilpotent. Thus we arrive at de Rham’s theorem:

Theorem 8.13 (de Rham).
Hp

dR(N) ∼= Hp(N), (8.14)
where Hp(N) denotes the pth homology group, the set {p-cycles in N with no boundary}/{p-cycles that are the
boundary of some (p + 1)-cycle}.

For instance, if N = Sn, then dim(H0
dR(S

n)) = 1. We can also find that dim(Hp
dR(S

n)) = 0 for p 6= 0, n
since we can contract any loop (e.g. an S1) to a point on Sn. And then we have dim(Hn

dR(S
n)) = 1, i.e.

there is one non-trivial “wrapping” of Sn by an Sn.
For n = Σg a handlebody with genus n (i.e. n donuts glued together) we have instead H0(Σg) = C,

H1(Σg) = C2g and H2(Σg) = C (dimensions 1, 2g, and 1).
The Euler character for the n-sphere is

χ(Sn) =

{
2 if n even
0 if n odd,

(8.15)

and for Σg it is χ(Σg) = 2− 2g.
For the path integral, χ(N) =

∫
e−S[x,ψ]DxDψDψ̄, where all fields are periodic with period β. Now if

we take the whole action, we see that our whole action is supersymmetrically trivial:

S =
∫ 1

2
gab ẋa ẋb +

1
2

gabψ̄a∇tψ
b +

1
4

Rabcdψ̄aψbψ̄cψddt (8.16)

= Q̄
[∮ gabψ̄a

2
(iẋb + Γb

cdψ̄cψd)dt.
]

(8.17)

3This is equivalent to the procedure in electromagnetism where we have a potential with a gauge symmetry A ∼ A + dλ, and we
fix the gauge by requiring that d† A = ∂µ Aµ = 0.
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We therefore learn that the path integral is independent of β.

Lecture 9.

Tuesday, February 19, 2019

Recall that we wrote down an action last time in the path integral, which took the form

S =
∫ 1

2
gab ẋa ẋb +

1
2

gabψ̄a∇tψ
b +

1
4

Rabcdψ̄aψbψ̄cψddt,

and we saw that the Witten index IW can be written in terms of the de Rham cohomology groups as well as
the Euler characteristic:

IW =
dim N

∑
p=0

(−1)p dim(Hp
dR(N)) = χ(N).

Since our action is Q̄-exact, the path integral is independent of the circumference β of S1. In particular, if
we expand our fields as

xa(τ) = xa
0 + δxa(τ) with

∮
δxa(τ)dτ = 0 (9.1)

ψa(τ) = ψa
0 + δψa(τ) with

∮
δψa(τ)dτ = 0 (9.2)

then as β→ 0, all the contributions from the non-zero modes (δxa, δψa) are highly suppressed, e.g.

δxa(τ) = ∑
k 6=0

δxa
ke2πikτ/β (9.3)

where these δxa(τ) have the interpretation of Fourier modes, and derivatives bring down 1/β → ∞. In
fact, the contributions from δx, δψ precisely cancel each other, leaving us with just an integral over the
zero-modes (x0, ψ0). That is, the path integral localizes as before to constant maps x0 : S1 → N, but there’s
no preferred point in N in the absence of a potential, so we still need to integrate over N.

The Witten index is then given by a path integral over the zero modes

χ(N) =
∫

e−S[x0,ψ0]dnx0dnψ0dnψ̄0

=
∫

exp−
[

1
2

Rabcd(x0)ψ̄
a
0ψb

0ψ̄c
0ψd

0

]
dnx0dnψ0dnψ̄0

=
∫

N
Tr(R ∧ R ∧ . . . ∧ R︸ ︷︷ ︸

n-form part

)

where Ra
b = Rcd

a
bdxc ∧ dxd is the curvature 2-form. But looking at the form of the exponential, we notice

that χ(N) = 0 for any theory with an odd number of fermionic zero modes. Therefore χ(N) = 0 if dim(N)
is odd. This is the Gauss-Bonnet formula (up to a constant we’ve neglected).

Aatiyah-Singer index theorem We take dim(N) = n = 2m to be even-dimensional. We can then restrict
the fermions ψa to be real, which allows us to simplify the action– it becomes

S[x, ψ] =
∮ 1

2
gab ẋa ẋb +

i
2

gabψa∇τψbdτ, (9.4)

where the last term has vanished since Ra[bcd] = 0 by the Bianchi identity.
This action is still invariant under SUSY transforms with ε = −ε̄, i.e.

δxa = εψa, δψa = −εẋa. (9.5)

This is sometimes called N = 1/2 SUSY in d = 1. We have momenta

pa =
δL
δẋa = gab ẋb +

i
2

ψcΓc
abψb (9.6)
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where ψc = gcdψd and we’ve picked up the second term from the ẋ hiding inside the covariant derivative.
The other momentum is

πa =
δL
δψ̇a = gabψb. (9.7)

Thus we have canonical commutation relations

[x̂a, p̂b] = iδa
b, {ψ̂a, ψ̂b} = 2gab. (9.8)

Note that here we don’t have relations between ψ, ψ̄ since the ψs are now real. Thus we won’t have some
elements with the natural interpretation of raising and lowering operators; instead, we will get some objects
which look like spinors in n = 2m dimensions.

For our purposes, the Dirac γ matrices obey (γi)† = γi and {γi, γj} = 2δij, where i, j = 1, . . . , dim(N)
are tangent (flat) indices. We construct m = n/2 raising and lowering operators over C by taking

γI
± =

1
2
(γ2I ± iγ2I+1) for I = 1, . . . , m (9.9)

where we combine the even gamma matrices with the next odd ones (with a ± sign respectively). One may
check that these obey

{γI
+, γJ

−} = δI J , {γI
+, γJ

+} = 0, and {γI
−, γJ

−} = 0. (9.10)
So these really are raising and lowering operators.

Starting from a spinor χ that obeys γI
− chi = 0∀I (effectively a vacuum state), we construct a basis of the

space S of spinors by acting with any combination of the raising operators γI
+. However, since (γI

+)
2 = 0,

each γI
+ can act at most once, so dim(S) = 2n/2 (since each γI

+ either acts or does not act on this vacuum
state).

The group Spin(n) (the double cover of SO(n)) then acts on these spinors via the generators

Σij = −1
4
[γi, γj], (9.11)

which themselves obey

[Σij, Σkl ] = i
(

δikδjl − δilΣik − δjkΣil − δilΣjk
)

. (9.12)

This representation is not irreducible. Let γn+1 = in/2γ1γ2 . . . γn (equivalent to γ5 in the usual case). This
obeys

(γn+1)2 = 1, {γn+1, γi} = 0, and [γn+1, Σij] = 0. (9.13)
We therefore decompose the space of spinors S as

S = S+ ⊕ S−

where S± are the ±1 eigenspaces of γn+1 and correspond to states constructed from an even/odd number
of raising operators γI

+ acting on χ.
The Dirac operator i/∂ anticommutes with γn+1, and thus decomposes as

i/∂ =

(
0 ∂+

∂− 0

)
(9.14)

where ∂± : S± → S∓. Note that ∂± annhilates S∓, so (∂±)2 = 0. This should remind us a bit of the exterior
derivative. We now define

index(i/∂) = dim ker(∂+)− dim ker(∂−). (9.15)
In our quantization of

S =
∫ 1

2
gab ẋa ẋb +

i
2

gabψa∇τψbdτ,

the Hilbert space is thus naturally L2(S(N),
√

gdnx), and the supercharge

Q = ψa(igab ẋb + ψcΓc
abψb) (9.16)

corresponds to the covariant Dirac operator i /∇. The Witten index Tr((−1)Fe−βH) is then just the index of
the Dirac operator split into its chiral parts,

Tr((−1)Fe−βH) = dim ker(∇+)− dim ker(∇−). (9.17)
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The path integral is again independent of the circumference β. Splitting

xa(τ) = xa
0 + δxa(τ) with

∮
δxa(τ)dτ = 0

ψa(τ) = ψa
0 + δψa(τ) with

∮
δψa(τ)dτ = 0

as before, we use Riemann normal coordinates near x0 ∈ N to write the metric as the flat metric (in
Euclidean signature) up to an O(δx2) correction,

gab(x) = δab −
1
3

Racbd(x0)δxcδxd + O(δx3). (9.18)

The connection may be chosen to vanish to zeroth order and to be given in terms of the curvature to first
order:

Γa
bc(x) = ∂dΓa

bc(x0)δxd = −1
3
(Ra

bcd(x0) + Ra
cbd(x0))δxd + O(δx2). (9.19)

To second order in the fluctuations, the action becomes

S(2)[x0, ψ0, δx, δψ] =
∮ (
−1

2
δxa

d2

dτ2 δxa +
1
2

δψa
d

dτ
δψa − 1

4
Rabcdψa

0ψb
0δxcδẋd

)
dτ. (9.20)

Lecture 10.

Thursday, February 21, 2019

Last time, we considered fields in some spacetime and chose Gaussian normal coordinates in order to
write (for variations of the fields xa = xa

0 + δxa(τ), ψa = ψa
0 + δψa(τ),

gab(x) = δab −
1
3

Racbd(x0)δxcδxd + O(δx3)

and a connection

Γa
bc(x) = ∂dΓa

bc(x0)δxd = −1
3
(Ra

bcd(x0) + Ra
cbd(x0))δxd + O(δx2).

So we have the quadratic action

S(2)[x0, ψ0, δx, δψ] =
∮ (
−1

2
δxaδab

d2

dτ2 δxb +
1
2

δψaδab
d

dτ
δψb − 1

4
Rabcdψa

0ψb
0δxc dδxd

dτ

)
dτ. (10.1)

For any fixed (xa
0, ψa

0), this is a free action, so the path integral over fluctuations gives

∫
e−S[x0,ψ0,δx,δψ]DδxDδψ =

√
det′(∂τδb

a)√
det′(−∂2τδa

b −Ra
b(x0, ψ0)∂τ)

(10.2)

where Ra
b = Ra

bcd(x0)ψ
c
0ψd

0 and det′ means without zero modes, i.e. we haven’t yet done the integrals
over (x0, ψ0).

We can split up the denominator by pulling out a ∂τ to find

∫
e−S[x0,ψ0,δx,δψ]DδxDδψ =

√
det′(∂τδb

a)√
det′(δa

b∂τ)
√

det′(−δa
b∂τ −Rab)

=
1√

det′(−δa
b∂τ −Ra

b)
. (10.3)

Notice that the matrix Ra
b is an antisymmetric n× n matrix (since we contracted over two indices in the

original Riemann tensor, and Ra
bcd was already antisymmetric in the first two indices) and n = 2m. We

therefore decompose the tangent space TN|x0 into m 2-dimensional subspaces on which Ra
b|i takes the

form

Ra
b|i =

(
0 ωi
−ωi 0

)
. (10.4)

Let −Di be the restriction of −δa
b∂τ −Ra

b to this 2D subspace.
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We expand

δxa(τ) = ∑
k 6=0

δxa
ke2πikτ . (10.5)

Then the eigenvalues of −Di on this subspace are −2πik±ωi for k ∈ Z, k 6= 0 (where the first term comes
from acting on a Fourier mode with ∂τ and the second comes the eigenvalues of Ra

b|i being ±ω). Therefore

det(−Di) = ∏
k 6=0

(−2πik + ωi)(−2πik−ωi)

= ∏
k 6=0

(−(2πk)2 −ω2
i )

=
∞

∏
k=1

(2πk)4
∞

∏
k=1

(
1 +

ω2
i

(2πk)2

)2

,

where the rewriting in the last line has come from changing the k 6= 0 product to a product over k = 1→ ∞.
This is clearly divergent thanks to the first factor. However, we can regularize this, e.g. using zeta-function

regularization. We find that
∞

∏
k=1

(2πk)4 = (4π2)2ζ(0)e−2ζ ′(0) = 1. (10.6)

The important factor is then

∞

∏
k=1

(
1 +

ω2
i

(2πk)2

)2

,

and we recall that

sinh(z) = z
∞

∏
k=1

(
1 +

z2

π2k2

)
,

so after regularization, we have that z = ω2
i /2 and (by direct comparison with the expansion of sinh(z))

our determinant term can be written as√
det ′(−Di) =

sinh(ωi/2)
(ωi/2)

. (10.7)

We now see that

IW = index(/∇) =
∫ ∞

∏
i=1

ωi/2
sinh(ωi/2)

dnx0dnψ0 (10.8)

=
∫

det
(
Ra

b(x0, ψ0)/2
sinh(Ra

b
(x0, ψ0)/2)

)
dnx0dnψ0. (10.9)

where /∇ denotes the Dirac operator on N. But by our regular Grassmann tricks, we must have precisely n
factors of ψ0 in order for this integral to be non-vanishing. Thus

IW =
∫

N
det
(

R/2
sinh R/2

)
. (10.10)

where Ra
b = Ra

bcd(x)dxc ∧ dxd is a curvature two-form. This is the Aatiyah-Singer index theorem.

Supersymmetric QFT If we had a d-dimensional theory that is Lorentz invariant, we must complete the
supersymmetry algebra {Q, Q†} = 2H. The Hamiltonian now comes with nontrivial kinetic terms and is
part of the d-momentum multiplet Pµ, so we need further supercharges. If we want to preserve Q† = (Q)†,
then these supercharges must have the same spin, and so must each have spin 1/2.

Specifically, the SUSY algebra in d-dimensions is

{Qα, Q†
β} = 2γ

µ
αβPµ, (10.11)
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where α, β are spinor indices and γµ is a Dirac γ matrix. We’ll mostly be concerned with d = 2, where

Dirac spinors have 2(d/2) = 2 complex components. Thus we can write ψ =

(
ψ−
ψ+

)
. With coordinates

(t, s) ∈ R2 and Minkowski metric ηµν = diag(+,−), we can represent the Dirac γs as

γt =

(
0 1
1 0

)
, γs =

(
0 −1
1 0

)
. (10.12)

These obey the Clifford algebra {γµ, γν} = 2ηµν. The action for a free, massless Dirac spinor in d = 2 is
then

S[ψ] =
1

2π

∫
R2

iψ̄/∂ψd2x (10.13)

where /∂ = γµ∂µ and ψ̄ = ψ†γt. We can of course plug in the explicit form of the spinors and γ matrices,
and we find that

S[ψ] =
1

2π

∫
R2iψ̄−(∂t + ∂s)ψ− + iψ̄+(∂t − ∂s)ψ+dtds, (10.14)

so we see that the spinor components decouple. Classically,

(∂t + ∂s)ψ− = 0 =⇒ ψ−(t, s) = f (t− s) (10.15)

represents a right-moving mode, while

(∂t − ∂s)ψ+ = 0 =⇒ ψ+(t, s) = f (t + s) (10.16)

is a left-moving mode. Under an SO(1, 1) transformation, i.e.(
t
s

)
7→
(

cosh γ sinh γ
sinh γ cosh γ

)(
t
s

)
(10.17)

with γ the usual (real) rapidity, the spinor components transform as

ψ± 7→ e±γ/2ψ, ψ̄± 7→ e±γ/2ψ̄. (10.18)

Lecture 11.

Tuesday, February 26, 2019

Superspace in d = 2 Let R2/4 denote the superspace with coordinates (x0, x1; θ+, θ−, θ̄+, θ̄−). Under an
SO(1, 1) transformation, the bosonic coordiantes transform as(

x0

x1

)
7→
(

cosh γ sinh γ
sinh γ cosh γ

)(
x0

x1

)
, (11.1)

whereas the fermionic coordinates transform as spinors,

θ± 7→ e±γ/2θ± (11.2)

θ̄± 7→ e±γ/2θ̄±. (11.3)

We therefore introduce fermionic derviatives

Q± =
∂

∂θ±
+ iθ̄±

∂

∂x±
(11.4)

Q̄± = − ∂

∂θ̄±
− iθ±

∂

∂x±
(11.5)

where ∂± = ∂
∂x± = 1

2

(
∂

∂x0 ± ∂
∂x1

)
,

These derivatives obey the anticommutation relations {Q±, Q̄±} = −2i∂±, so they represent our
supersymmetry algebra on R2/4.

The SUSY transformations act geometrically on R2/4, being generaed by

δ = ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+, (11.6)

where we note that the parameters ε±, ε̄± must themselves be spinors in order for Φ→ Φ + δΦ.

Definition 11.7. A superfield F is simply a function on R2/4.
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A generic superfield has an expansion

F(x±, θ±, θ̄±) = f0(x±) + θ+ f+(x±) + θ− f−(x±) + θ̄+g+(x±) + θ̄−g−(x±) + . . . + θ+ θ̄+θ− θ̄−D(x±).
(11.8)

This exapansion has 24 = 16 components altogether (since each fermionic variable can either be there or
not there).

Notice that under a SUSY transform F 7→ F + δF, the highest component field D(x±) can change at most
by bosonic derivatives. We can see this by looking at the forms of the fermionic derivatives– since this is
the coefficient of all the θs and θ̄s, there are no higher terms to bring down. The component for θ+ θ̄+θ−

could come up under Q± but only after a ∂
∂x± . So indeed D is only changed up to bosonic derivatives.

Chiral superfields It’s often useful to have smaller superfields that are constrained in some way. For this
purpose, let us introduce

D± =
∂

∂θ±
− iθ̄±∂± (11.9)

D̄± = − ∂

∂θ̄±
+ iθ±∂±. (11.10)

These are very similar to the Qs, but they obey slightly different anticommutation relations:

{D±, D̄±} = +2i∂±, (11.11)

with other anticommutators zero. Moreover, it turns out that

{D, Q} = {D̄, Q} = 0 (11.12)

(for any choice of ± subscripts).

Definition 11.13. A chiral superfield Φ is a superfield which obeys D̄±Φ = 0.

These Φ can depend on (x±, θ±, θ̄) only through the combinations (y±, θ±) where

y± = x± − iθ± θ̄± (11.14)

since D̄±y± = 0, D̄±y∓ = 0.
We can then expand a chiral superfield as

Φ = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F(y±). (11.15)

Notice that the product Φ1Φ2 of any two superfields is again chiral, while the conjugate Φ̄ of a chiral
superfield Φ obeys D±Φ̄ = 0 and is called antichiral.

Under a SUSY transformation Φ 7→ Φ + δΦ, but since all {Q, D} = 0, this SUSY transformation itself is
chiral,

D̄±(δΦ) = δ(D̄±Φ) = 0. (11.16)
Thus SUSY transforms preserve chirality in this sense. To work out the SUSY transformations on the
component fields, first note that

Q± =
∂

∂θ±

∣∣∣∣
x,θ̄

+ iθ̄±
∂

∂x±

∣∣∣∣
θ,θ̄

=
∂

∂θ±
|y,θ̄ +

∂y±

∂θ±
|x,θ̄

∂

∂y±
|θ,θ̄ + iθ̄±

∂

∂y±
|θ,θ̄ . (11.17)

But we see that since ∂y±

∂θ± |x,θ̄ = −iθ̄±, these last two terms cancel and so

Q± =
∂

∂θ±
|y,θ̄ . (11.18)

Similarly,

Q̄± = − ∂

∂θ̄±
|y,θ − 2iθ±

∂

∂y±
|θ,θ̄ . (11.19)

Using this, one finds the component transformations

δφ = ε+ψ− − ε−ψ+ (11.20)

δψ± = ε±F± ε̄∓∂±φ (11.21)

δF = −2iε̄∂−ψ+ − 2iε̄−∂+ψ−. (11.22)
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Thus the bosons are picking up some fermionic contributions, while the fermions pick up derivatives of the
bosonic fields. There’s also a bit of this mysterious F function which is influenced by derivatives of the
fermions. Note that the SUSY transform of the θ2 term F is a bosonic total derivative, in direct analogy to
the D component of the superfield in 11.8.

Supersymmetric invariant actions The fact that the D-term of a generic superfield and F term of a
chiral superfield vary only by total derivatives allows us to readily construct SUSY-invariant actions.
Let K(Fi, Φa, Φ̄a) be any real, smooth functions of real superfields Fi(x±, θ±, θ̄±) and chiral superfields
Φa(x± − iθ± θ̄±, θ±). Then ∫

R2/4
K(Fi, Φa, Φ̄a) d2xd2θd2θ̄

is SUSY invariant provided the component fields behave appropriately as |x±| → ∞. Integrating with
respect to θs and θ̄s picks out the highest order term (the Fs and Ds), and we know that these transform at
most up to a total derivative in the xs, so will be invariant after integrating with respect to d2x. This K field
is called the Kähler potential.

Likewise, suppose W(Φa) (called the superpotential) is a holomorphic function of Φa. Then

D̄±W(Φa) = 0 (11.23)

and so ∫
R2/4

W(Φa) d2yd2θ (11.24)

is again SUSY-invariant.

The Wess-Zumino model in d = 1 + 1 Let’s consider the simplest case of a single chiral superfield Φ and
its conjugate Φ̄. We take

K(Φ, Φ) = Φ̄Φ (11.25)

and keep the superpotential W(Φ) generic. Our action is then

S[Φ, Φ̄] =
∫
R2/4

Φ̄Φ d2xd4θ︸ ︷︷ ︸
kinetic terms

+


∫
R2/2

W(Φ)d2yd2θ + c.c.︸ ︷︷ ︸
potential terms

, (11.26)

and this action is guaranteed to be supersymmetric (c.c. indicates complex conjugate of the superpotential),
given appropriate asymptotics.

Lecture 12.

Thursday, February 28, 2019

Last time, we stated the Wess-Zumino model of a chiral superfield,

S[Φ, Φ̄] =
∫
R2/4

Φ̄Φ d2xd4θ +
∫
R2/2

W(Φ)d2yd2θ +
∫
R2/2

W̄(Φ̄)d2ȳd2θ̄. (12.1)

Note that W(Φ) is a holomorphic function of the superfield

Φ = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F(y±) (12.2)

where y± = x± − iθ± θ̄±. Note also the limits of integration and the integration measures, since the
superpotential separates into holomorphic and antiholomorphic parts. We have

W(Φ)|θ+θ− = F∂W(φ)− ψ+ψ−
∂2W
∂φ2 (φ). (12.3)
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For the Kähler potential |Φ|2
θ4 we need to write

Φ(x±, θ±, θ̄±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F(y±) (12.4)

= φ(x±)− iθ+ θ̄+∂+(x±)− iθ− θ̄−∂−φ(x±) + θ+ θ̄+θ− θ̄−∂+∂−φ(x±) (12.5)

+ θ+ψ+(x±)− iθ+θ− θ̄−∂−ψ+(x±) + θ−ψ−(x±)− iθ−θ+ θ̄+∂+ψ−(x±) + θ+θ−F(x±)
(12.6)

as a function on non-chiral superspace. All we’ve done is expand y± in x±, θ, dropping any terms that are
zero.

Similarly, the antiholomorphic part Φ̄(x±, θ±, θ̄± has an expansion which looks like

Φ(x±, θ±, θ̄±) = φ̄(x±) + iθ+ θ̄+∂+(x±) + iθ− θ̄−∂−φ̄(x±)− θ+ θ̄+θ− θ̄−∂+∂−φ̄(x±)

− θ̄+ψ̄+(x±)− iθ̄+θ− θ̄−∂−ψ̄+(x±)− θ̄−ψ̄−(x±)− iθ̄−θ+ θ̄+∂+ψ̄−(x±) + θ̄+ θ̄− F̄(x±).

We need to extract the θ2θ̄2 term from Φ̄Φ, i.e. we need to collect terms with all four θs.4 We have

Φ̄Φ|θ4 = − φ̄∂+∂−φ + ∂+φ̄∂−φ + ∂−φ̄∂+φ− ∂+∂−φ̄φ

+ iψ̄+∂−ψ+ − i∂−ψ̄+ψ+ + iψ̄−∂+ψ− − i∂+ψ̄−ψ− + |F|2.

where we’ve been careful to reorder the θs to be in the order θ+θ− θ̄+ θ̄− to fix the signs.
Combining all the pieces we have a component action

S[φ, ψ, F] =
∫
R2
[∂µφ̄∂µφ + iψ̄−∂+ψ− + iψ̄+∂−ψ+ + |F|2

+ FW ′(φ)− ψ+ψ−W ′′(φ) + F̄W̄ ′(φ̄)− ψ̄−ψ̄+W̄ ′′(φ̄)]d2x, (12.7)

where we’ve explicitly performed the integral over the θs. The kinetic terms come from |φ|2
θ4 , while the

potential terms come from the superpotential W(Φ), W̄(Φ̄).
Notice the field F is auxiliary (i.e. its equation of motion is purely algebraic), so we can eliminate it

using its equation of motion,

F + W̄ ′(φ̄) = 0 =⇒ F = −∂W̄
∂φ̄

. (12.8)

This gives us the interactions ∫
−|W ′(φ)|2d2x =

∫
−V(φ)d2x, (12.9)

giving a potential V(φ) = |W ′(φ)|2 for the scalars.

Symmetries of the WZ model By construction, this model is invariant under SUSY transformations acting
on the component fields of Φ. The Noether currents for the supersymmetry are Gµ

± where

G0
± = 2∂±φ̄ψ± ± iψ̄±F (12.10)

G1
± = ∓2∂±φ̄ψ± + iψ̄∓F (12.11)

and similarly for Ḡµ
±, the Noether charge is Q± =

∫
R1 G0

±dx1, the integral over a constant time slice
(remember we’re in 1 + 1 dimensions). Notice that the Gµ

± currents have spin 3/2, so the charges
Q± 7→ e+γ/2Q± are each spin 1/2, as expected for supercharges.

Consider the axial U(1)A transformation acting on Φ(x±, θ±, θ̄±) such that

Φ(x±, θ±, θ̄±) 7→ Φ(x±, e∓iαθ±, e±iα θ̄±), (12.12)

leaving θ+θ− invariant. Then W(Φ)|θ2 is likewise invariant, as is Φ̄Φ|θ4 , so these transformations are also
symmetries.

In terms of the component fields, we can equivalently think of these as

φ 7→ φ, ψ± 7→ e∓iαψ±, F 7→ F. (12.13)

4Gotta catch ’em all.
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Writing it like this, it is clear looking at the form of the action that 12.7 is invariant under such transformati-
ons. The corresponding Noether charge is

FA =
∫
R1
(ψ̄+ψ+ − ψ̄−ψ−)dx1. (12.14)

Now consider the U(1)V transformations

Φ(x±, θ±, θ̄±) 7→ eiqβΦ(x±, e−iβθ±, e+iβ θ̄±), (12.15)

where θ+, θ− transform together, and we allow the whole superfield Φ to have charge q. In this case, θ+θ−

is not invariant but transforms to
θ+θ− 7→ e−2iβθ+θ−, (12.16)

although the combination
θ2θ̄2 7→ θ2θ̄2, (12.17)

is invariant. So the Kähler term is invariant for any q, whereas the superpotential term will only be
invariant if

W 7→ e2iβW (12.18)

to cancel the phase from the transformation of θ2. In particular, for a monomial W(Φ) = cΦk, we
have U(1)V symmetry iff we assign charge q = 2/k to Φ. At the level of the component fields, these
transformations can be taken to be

φ 7→ e2iβ/kφ, ψ± 7→ e(2/k−1)iβψ±, F 7→ e(2/k−2)iβF. (12.19)

These are automatically symmetries of the kinetic terms (everything through |F|2 in 12.7) since they are
just phases, but we require this form to preserve the potential terms. What we’ll show next time is that
the superpotential is not altered by quantum corrections, so the quantum theory with respect to the
superpotential has the same form as in the classical theory.

Lecture 13.
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Previously, we considered the Wess-Zumino model and identified two U(1) symmetries, the axial UA(1)
symmetry sending

φ 7→ φ, ψ± 7→ e∓iαψ±, ψ̄± 7→ e±iαψ̄± (13.1)

and the vector UV(1) symmetry sending

φ 7→ eiqβφ, ψ± 7→ ei(q−1)βψ±, ψ̄± 7→ e−i(q−1)βψ̄±. (13.2)

Vacuum moduli space The scalar potential has the form

V(φ) = |W ′(φ)|2

or more generally

V(φa, φ̄ā) = ∑
a

∣∣∣∣ ∂W
∂φa

∣∣∣∣2. (13.3)

Recall that a ground state |Ω〉 is supersymmetric iff H|Ω〉 = 0. In particular, a field configuration can be a
ground state if it sits in a (global) minimum of V(φ) over all space since V ≥ 0. THus the ground state is
supersymmetric if

∂W
∂φa (φ

a
0) = 0 ∀φa,

i.e. if each of the terms in the potential sum 13.3 vanish.
In the quantum theory, the values φa

0 are the expectation values φa
0 = 〈Ω|φa|Ω〉 of the fields φa in

the vacuum state. Sometimes these values are just zero, but we know that sometimes symmetries are
broken and we expand about some nonzero field values. Typically, the holomorphic function W(φa) is a
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polynomial (over C), so the vacuum conditions ∂W
∂φa are a system of (complex) polynomials. The space of

vacuaM is the zero set of these polynomials, i.e.

∂W
∂φ1 =

∂W
∂φ2 = . . . =

∂W
∂φn = 0, (13.4)

which defines a affine algebraic variety, so we make contact with algebraic geometry.

Example 13.5. Consider the superpotential

W(φ) = m
φ2

2
+ λ

φ3

3
. (13.6)

The vacuum conditions are then
∂W
∂φ

= mφ + λφ2 = 0, (13.7)

which tells us that either φ = 0 or φ = −m/λ. If we plot V(φ) = |W ′|2, we see that there are two isolated
supersymmetric minima in our theory.

Example 13.8. Consider now a theory with two fields l, h:

W(l, h) =
λ

2
lh2. (13.9)

Then the vacuum equations tell us
∂W
∂l

=
λh2

2
,

∂W
∂h

= λlh. (13.10)

Thus the vacuum moduli space requires h = 0 but l is unconstrained. However, for 〈l〉 6= 0 (the field l
takes on a VEV), the field h is then massive with mass |λ 〈l〉 |, whereas the field l is always massless in the
vacuum (since 〈h〉 = 0, and so there is no term which goes as |l|2 in the action).

Example 13.11. Finally, consider a theory with superpotential

W(X, Y, Z) = XYZ. (13.12)

In this case, we have conditions

∂XW = YZ, ∂YW = XZ, ∂ZW = XY. (13.13)

We see that if any pair of the fields vanish, then all three vacuum conditions are satisfied, and the third
field is free to take on any value we like. Therefore

M = {X = Y = 0} ∪ {X = Z = 0} ∪ {Y = Z = 0}. (13.14)

There are three “branches” of the space of vacua since e.g if we take 〈X〉 = 〈Y〉 = 0 then we are otherwise
free to select Z ∈ C.

In general, the vacuum moduli space is the affine variety C[φ1, . . . , φn]/(∂aW). IfM is not just a set of
isolated points, we say the potential V(φa) has flat directions, i.e. we can change some 〈φa〉 continuously
without leaving V(〈φa〉) = 0.

In a generic QFT, the structure of the classical potential is changed by quantum corrections. Couplings
run with scale, and new couplings are generated (at least in an effective theory). In particular, these
corrections tend to lift flat directions, leaving us with isolated vacua. SUSY theories are special and preserve
the symmetry which gave rise to the original flat directions.

Seiberg Non-Renormalization Theorems In a supersymmetric theory, the effective superpotential Weff(Φ)
in the Wilsonian action (after integrating out modes) is actually identical to W(Φ). We can understand this
with an example. Suppose W(Φ) = m

2 Φ2 + λ
3 Φ3. Recall that our interactions come from V(φ) = |W ′|2, so

we will get some different vertices, and there are many non-trivial Feynman diagrams we can draw. (Note
that fermionic couplings come from the other terms in the Wess-Zumino model.) For example, the 1-loop
corrections to the m coupling receives contributions from some loop diagrams. However, these diagrams
cancel exactly, and the same cancellation holds to all orders in λ! This is a remarkable simplification.

It appears as though W(Φ) = m
2 Φ2 + λ

3 Φ3 breaks the UV(1) symmetry, and the UA(1) symmetry acts
trivially on φ, so cannot help constrain the form of m2

eff. So what saves our theory from loop corrections?



14. Thursday, March 7, 2019 31

Seiberg’s idea was to promote the couplings (m, λ) to chiral superfields (M, Λ) such that m, λ are the
VEVs of the scalars in M, Λ. Note that (M, Λ) must be chiral superfields since they appear in W(Φ, M, Λ).
In promoting these couplings to fields, we give them kinetic terms

K(Φ, Φ̄)→ K(Φ, Φ̄) +
1
ε
[M̄M + Λ̄Λ], (13.15)

so the new kinetic terms come with a factor 1/ε. Hence fluctuations in M, Λ are strongly suppressed as
ε→ 0.

The point of doing this is that W(Φ, M, Λ) = M
2 Φ2 + Λ

3 Φ3 does preserve both UA(1), UV(1) if we assign
charges to the new superfields:

Φ M Λ
UV(1) 1 0 −1

UWZ(1) 1 −2 −3

where UWZ(1) is an additional U(1) symmetry acting trivially on θ±, θ̄±. Provided we choose a regulari-
zation which is supersymmetric and preserves these two two U(1)s, the Weff(Φ, M, Λ) in the Wilsonian
action is constrained, so that it

◦ is holomorphic in (Φ, M, Λ)
◦ has UV(1) charge +2 and UWZ(1) charge zero
◦ reduces to the classical W(Φ) in the limit that M, Λ→ 0 (weak coupling).

Lecture 14.
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We continued our study of the Wess-Zumino model, with Seiberg’s insight that we could promte the
couplings m, λ to superfields in their own right, arriving at a superpotential

W(Φ, M, Λ) =
M
2

Φ2 +
Λ
3

Φ3, (14.1)

where Weff(Φ, M, Λ) must be
◦ holomorphic in Φ, M, Λ
◦ UV(1) charge 2 and invariant under Φ→ eiαΦ, M→ e−2iα M, Λ→ e−3iαΛ
◦ reduce to W(Φ, Λ, M as Λ→ 0.

The first two conditions fix

Weff(Φ, M, Λ) = MΦ2 f
(

ΦΛ
M

)
, (14.2)

where f (t) must be holomorphic in t, and in particular f (t) is regular as t → 0 and f (t)/t is regular as
t → ∞. Thus we must have f (t) = a + bt, something at most linear in t. Teh final condition hence fixes
a = 1

2 , b = 1
3 . Hence

Weff(Φ, M, Λ) =
M
2

Φ2 +
Λ
3

Φ3 = W(Φ, M, Λ). (14.3)

We find that the effective potential is the same as the original potential. Finally, we freeze the superfields
(M, Λ) to their VEVs (m, λ) by sending ε→ 0 in the kinetic terms 1

ε [M̄M + Λ̄Λ]. The value of ε also cannot
affect Weff because we can always promote 1/ε to a real superfield, and if supersymmetry is to hold, the
superpotential can’t depend on real superfields (only chiral superfields). More generally, the quantum
superpotential is always independent of couplings appearing only in the Kähler potential K(Φ, Φ̄).

In the end, we conclude that the effective superpotential is the same as it was classically–

Weff(Φ) =
m
2

Φ2 +
λ

3
Φ = W(Φ) (14.4)

and therefore receives no quantum corrections from perturbations in e.g. λ. In fact, with a bit more work
this can be shown to be an exact, non-perturbative statement.

However, the Kähler potential does generically get quantum corrections. This is because the Kähler
potential can depend on real superfields and is not guaranteed to be holomorphic; moreover, couplings
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from the superpotential can appear as couplings in the Kähler potential. In particular, the kinetic terms can
receive corrections, so these can be nontrivial wavefunction renormalization, i.e.

Φr = Z1/2
Φ Φ (14.5)

since e.g. we might have ∂µφ̄∂µφ→ Zφ∂µφ̄∂µφ = ∂µφ̄r∂µφr after loop corrections. We might like to keep the
kinetic term canonically normalized in terms of these φrs. In terms of the renormalized fields (for canonical
kinetic terms), we then have

Weff(Φr) =
mr

2
Φ2

r +
λr

3
Φ3

r where mr = Z−1
Φ m, λr = Z−3/2

Φ λ. (14.6)

However, it’s usually nicer to stick with the unrenormalized fields, since this makes the invariance of the
superpotential under quantum corrections manifest.

Kähler geometry A Kähler manifold is a manifold M with three compatible structures: a Riemannian
metric g, a (positive) symplectic form ω, and a complex structure J.

A 2-form ω ∈ Ω2(M) is symplectic if
◦ dω = 0 (i.e. ω = ωij(x)dxi ∧ dxj, then ∂[iωjk] = 0)
◦ ω is non-degenerate (i.e. for any vector field X, ω(X, Y) = 0∀ vectors Y iff X = 0. Equivalently, ωij

as an antisymmetric matrix is invertible)
A symplectic form is a natural candidate for a Poisson bracket structure.

A almost complex structure is a map J : TM → TM (i.e. on vectors in the tangent space) such that
J2 = − id. For example, on R2, { ∂

∂x , ∂
∂y} is a basis of TM, and we could choose

J
(

∂

∂x

)
=

∂

∂y
, J

(
∂

∂y

)
= − ∂

∂x
. (14.7)

Notice this feels a lot like multiplying by i, such that J2 = −1.
We define the holomorphic and antiholomorphic tangent bundles onM (vector fields, if you like) as

T(1,0)M = {X ∈ TM⊗C :
1
2
(1− i J)X = X}, (14.8)

T(0,1)M = {X ∈ TM⊗C :
1
2
(1 + i J)X = X}. (14.9)

That is, the holomorphic tangent bundle is the set of tangent vectors living in the +i eigenspace of J, and
the antiholomorphic tangent bundle is the set of tangent vectors in the −i eigenspace.

An almost complex structure J is said to be integrable if ∀X, Y ∈ TM⊗C, we have

(1 + i J)
2

[
(1− i J)

2
X,

(1− i J)
2

Y
]
= 0. (14.10)

That is, the Lie bracket of any two holomorphic vector fields is again holomorphic, so the tangent bundles
decouple as we move around in the space. Taking the real and imaginary parts of these equations, we find
that

NJ(X, Y) = −J2([X, Y]) + J([JX, Y] + [X, JY])− [JX, JY] = 0. (14.11)
Here NJ(X, Y) is known as the Nijenhuis tensor. Notice that J need not be a constant; in principle, these Lie
brackets also differentiate the Js. However, the final result will turn out to not invole derivatives of the Xs
and Ys. Moreover, this tensor is linear– for functions f , g, we have NJ( f X, gY) = f gNJ(X, Y).

We now say that J is a complex structure iff it is an integrable almost complex structure. According to
the Newlander-Nirenberg theorem, if any real manifoldM has N(X, Y) = 0, then ∃ complex coordinates
xi → (za, z̄z̄) on any patch U ⊂M, and the transition functions between overlapping patches are purely
holomorphic.

Note there may be different complex structures J on the same manifold, which may not be equivalent.
Some manifolds admit no complex structures, some have uniquely one (e.g. the Riemann sphere), and
others admit several inequivalent structures.

If J is a complex structure, we can split the tangent bundle up into holomorphic and antiholomorphic
sectors,

TM⊗C = T(1,0)M⊕ T(0,1)M (14.12)
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globally. Similarly, we split T∗M⊗C = T∗(1,0)M⊕ T∗(0,1)M where T∗(1,0)
p M is the dual vector space

to T(1,0)
p M∀p ∈ M. Hence if ᾱ ∈ T∗(0,1)M is an antiholomorphic one-form and z ∈ T(1,0)M is in the

holomorphic tangent bundle, then ᾱ(z) = 0. Equivalently, ᾱ ∈ T∗(0,1)M iff ᾱ = ᾱā(z, z̄)dz̄z̄.
This structure extends– we can likewise split

Ωk(M,C) =
⊕

k=p+q

Ω(p,q)(M), (14.13)

the space of complex-valued k-forms, into spaces Ω(p,q)(M) with p holomorphic indices and q antiholo-
morphic indices,

η(z, z̄) = ηa1 ...ap b̄1 ...b̄q
(z, z̄)dza1 ∧ . . . ∧ dzap ∧ dz̄b̄1 ∧ . . . ∧ dz̄b̄q . (14.14)

We also have the exterior derivative operation d : Ωk → Ωk+1, so on a C-manifold this splits as d = ∂ + ∂̄

where ∂ : Ω(p,q) → Ω(p+1,q) and ∂̄ : Ω(p,q) → Ω(p,q+1). For example, on R2,

d = dx
∂

∂x
+ dy

∂

∂y
= dz

∂

∂z
+ dz̄

∂

∂z̄
(14.15)

where z = x + iy. Also notice that

0 = d2 = ∂2 + (∂∂̄ + ∂̄∂) + ∂̄2 (14.16)

and we must have ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0 separately since the form after each of these live in different
spaces.

Lecture 15.
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A complex manifold admits a structure of (p, q)-forms Ωp,q(M) =
∧p T∗(1,0)M∧q T∗(0,1)M. As we

showed last time, the complex structure of the manifold and the nilpotency of the exterior derivative
implies that ∂2 = ∂̄2 = ∂ p̄ + p̄∂ = 0 as operators.

A Kähler manifold has a symplectic form ω ∈ Ω2(M) that is compatible with J in the sense that

ω(JX, JY) = ω(X, Y) ∀ vector fieldsX, Y. (15.1)

This implies that ω actually lies in Ω1,1(M),5 so

ω = ωa,b̄(z, z̄)dza ∧ dz̄b̄. (15.2)

Given any such ω, we get a Hermitian metric for free, defined by

g(X, Y) = ω(X, JY) (15.3)

where J : TM→ TM, J2 = −1. (Recall that J is like multiplying by i.)
◦ We may check that this new metric g really is symmetric:

g(Y, X) = ω(Y, JX) = −ω(YX, Y) = ω(JX, J2Y) = ω(X, JY) = g(X, Y) (15.4)

where we have used the antisymmetry of ω, the property that J2 = −1, and the fact that ω and J
are compatible to explicitly show the symmetry of g.
◦ Moreover,

g(JX, JY) = ω(JX, J2Y) = −ω(JX, Y) = ω(Y, JX) = g(Y, X) = g(X, Y). (15.5)

Therefore g is compatible with J, which implies that g is indeed Hermitian.
◦ The metric g is positive iff ω is positive, ω(X, JX) > 0.

5Ω2 decomposes into the direct sum Ω2,0 ⊕Ω1,1 ⊕Ω0,2.
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Since dω = 0, on a C manifold we have ∂ω + ∂̄ω = 0, where ∂ω ∈ Ω2,1 and ∂̄ω ∈ Ω1,2. Hence the
derivatives individually vanish, ∂ω = 0 = ∂̄ω.

The complex form of the Poincaré lemma (i.e. if dα = 0, then α = dβ on any open U ⊂ M) says that
forms which are closed under ∂ and ∂̄ locally must be exact, i.e. since ∂ω = ∂̄ω = 0, ∃K a real function on
M (a (0, 0) form, if you like) such that

ω = i∂∂̄K. (15.6)
Thus the metric is

gab̄ = ∂a∂̄b̄K (15.7)
on any coordinate patch U, and we call this function K the Kähler potential. Notice it is defined up to
transformations

K(z, z̄)→ K(z, z̄) + f (z) + f̄ (z̄), (15.8)
since the two derivatives will kill off the purely holomorphic and antiholomorphic contributions.

Example 15.9. The complex plane Cn is Kähler, with K = ∑n
a=1 |za|2, where

g =
n

∑
a=1

dzadz̄ā (15.10)

ω = i
n

∑
a=1

dza ∧ dz̄ā. (15.11)

Example 15.12. The complex projective plane CPn is also Kähler, where K = ln
(
1 + ∑n

a=1 |za|2
)
, with the

za defined on a Cn coordinate patch. The associated metric is called the Fubini-Study metric on CPn.

Note that on a Kähler manifold, the only non-vanishing pieces of the connection are

Γa
bc =

1
2

gai(∂bgic + ∂cgib − ∂igbc) (15.13)

where i = 1, . . . , 2n are real indices, a = 1, . . . , n holomorphic indices. In fact, since the metric must have
one holomorphic and one antiholomorphic index, we can WLOG replace i by an antiholomorphic index d̄.
Hence

Γa
bc =

1
2

gad̄(∂bgd̄c + ∂cgd̄b − ∂d̄gbc)

=
1
2

gad̄(∂b∂d̄∂cK + ∂c∂d̄∂bK)

= gad̄(∂bgcd̄)

and
Γā

b̄c̄ = gād∂b̄gc̄d. (15.14)
One may check that all other components vanish by similar arguments. Hence the only non-vanishing pieces
of the Levi-Civita connection are those components which have all holomorphic or all antiholomorphic
indices.

Kähler manifolds and supersymmetry The general kinetic term in a supersymmetric nonlinear sigma
model on R2/4 is

∫
R2/4 K(Φ, Φ̄)d2xd4θ. Notice this is defined only up to transformations K → K(Φ, Φ̄) +

f (Φ) + f̄ (Φ̄), as (up to total derivatives) such contributions will not survive
∫

d4θ. Performing the integrals
gives

Skin[Φ, Φ̄] =
∫
R2
−gab̄∂µφa∂µφ̄b̄ + igab̄ψ̄b̄

+∇−ψa
+ + igab̄ψ̄b̄

−∇+ψa
−

+ Rab̄cd̄ψa
+ψ̄b

+ψc
−ψ̄d̄
− + gab̄(Fa − Γa

cdψc
+ψd
−)(F̄b̄ − Γb̄

ē f̄ ψ̄ē
−ψ

f̄
+),

where gab̄(φ, φ̄) = ∂a∂b̄K(φ, φ̄) is the Kähler metric and ∇µψa = ∂µψa
+ + γa

bc∂µφbψc
+ where µ is a worldsheet

index. One can explicitly compute all these terms, but we’ll just make a plausibility argument. Recall that

Φ(y±, θ±) = φ + θ+ψ+ + θ−ψ− + θ+θ−F, (15.15)

with derivatives θ+ θ̄+∂+, θ− θ̄−∂− appearing as we expand y±x± + iθ± θ̄±.
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Eliminating the auxiliary fields F, F̄ by their equations of motion Fa = Γa
bcψb

+ψc
−, the remaining action is

invariant under the following global symmetries:
◦ C coordinate transformations of the target space
◦ Kähler transformations
◦ SUSY transformations on the worldsheet (by construction)
◦ UV(1) (vector) transformations ψ± → eiβψ±, ψ̄± → e−iβψ̄±, φ→ φ.
◦ UA(1) (axial) transformations, ψ± → e±iαψ±, ψ̄± → e∓iαψ̄±, φ→ φ
◦ Dilations (scale transformations) on the worldsheet (recall that in d = 2, [φ = 0], [ψ±] = 1/2). If we

like, we can expand the metric about a point such that we have some leading order canonical kinetic
term behavior, and then the higher-order corrections away from that point represent interactions.

Thus at the classical level, this defines a supersymmetric CFT. Turning on a superpotential
∫

W(Φ), d2θd2x =∫ (
Fa∂aW − 1

2 ∂a∂bWψa
+ψb
−

)
d2x breaks conformal invariance, since the couplings in W(Φ) can be dimensi-

onful and therefore break conformal invariance.
These symmetries may or may not survive at the quantum level– we will see that symmetries of the

action may not be present in the path integral, leading to anomalies. Closely related to that is the fact that in
the quantum theory, we expect couplings to run. We’ll try to show that these symmetries are anomaly-free
if the manifold is not just Kähler but in fact Calabi-Yau.

Lecture 16.
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Consider the action

S[φ, ψ] =
∫ [

gab̄hµν∂µφa∂νφ̄b̄ + igab̄ψ̄b̄γµ∇µγa + Rab̄cd̄ψa
+ψc
−ψ̄b̄
−ψ̄d̄

+

]√
hdx2 (16.1)

with h a worldsheet metric. Classically, this is invariant under the scale transformations

hµν → λ2hµν, γµ → λ−1γµ, ψ→ λ−1/2ψ, λ ∈ R>0. (16.2)

However, quantum mechanically, there can be a non-zero β-function for the target space metric gab̄(φ).
To understand this, first consider a purely bosonic nonlinear sigma model with Riemanninan target

space:

S[φ] =
1
2

∫
gij(φ)∂

µφi∂µφjdx2. (16.3)

Using Riemann normal coordiantes, φi = φi
0 + ξ i, we have a flat metric plus corrections of order ξ2 in terms

of the curvature:

gij(φ) = δij −
1
3

Rikjl(φ0)ξ
kξ l + O(ξ3). (16.4)

Then the action becomes

S[ξ] =
1
2

∫
δij∂

µξ i∂µξ j − 1
3

Rikjlξ
kξ l∂µξ i∂µξ j + . . . (16.5)

The propagator in this theory from ξ i(x) to ξ j(y) is then∫ d2k
(2π)2

eik·(x−y)

k2 δij. (16.6)

Note that this is logarithmically divergent as k→ 0 (which we’ll deal with later by applying an IR cutoff).
We also have a four-point vertex corresponding to

1
6

∫
Rikjl(φ0)ξ

kξ l∂µξ i∂µξ jd2x. (16.7)

This vertex allows us to compute a one-loop correction to the propagator
〈
ξ i(x)ξ j(y)

〉
. We get a contribution∫ d2k

(2π)2
eik·(x−y)

k2

[
δij +

1
3

∫ d2 p
(2π)2

1
p2 Rij(φ0)

]
(16.8)
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Applying momenta cutoffs, we have∫
µ<|p|<λ

d2 p
(2π)2

1
p2 =

1
2π

∫ Λ

µ

dp
p

=
1

2π
ln
(

Λ
µ

)
, (16.9)

so the metric is renormalized and picks up a contribution from Rij the Ricci tensor:

gij(µ) = δij +
1

6π
Rij ln

(
Λ
µ

)
, (16.10)

giving a beta function

βij =
1

6π
Rij (16.11)

proportional to the Ricci curvature.
◦ For Rij > 0, we have βij > 0, so the model is asymptotically free– the curvature of the target space

becomes less important at short distances on the worldsheet, so the theory makes sense in the UV.
◦ For Rij < 0, the theory only makes sense as an effective theory (at least in this bosonic case), but

becomes trivial in the IR.
◦ The interesting case is Rij = 0, when the target space is Ricci flat/solves the vacuum Einstein

equations. These are conformally invariant to (at least) one-loop accuracy.
Exactly the same calculations also hold in supersymmetric models. In particular there is non-zero running
of the (Kähler) metric gab̄ → gab̄ + #Rab̄. Ricci flat Kähler manifolds are called Calabi-Yau. There was an
expectation that Calabi-Yau manifolds might also enjoy some sort of non-renormalization theorem for
the target space, but in fact these still receive quantum corrections starting at four loops. This poses an
apparent problem for string theory, where we integrate over all conformal structures on the worldsheet.
This doesn’t really make sense if we can’t construct conformally invariant structures on the worldsheet (i.e.
the conformal invariance becomes part of the gauge symmetry and then by definition cannot be broken).

To address this problem, consider the correlation function f (h, g) =
〈
(ψ−)k(ψ̄+)k

〉
for some k ∈ Z≥0.

This vanishes unless there are exactly k zero modes of ψ− and ψ̄+ since the ψ− and ψ̄+s do not mix– 6 ∃ any
Feynman graphs that can absorb these fermion insertions. By a zero mode, we mean a solution ψ− such
that ∇+ψ− = 0 or ∇̄ψ− = 0 on a Euclidean signature worldsheet. That is, there is a zero mode of ψ− iff

H0(Σ, φ∗T(1,0)M⊗ S−), (16.12)

where H0 indicates it is holomorphic on Σ, T(1,0) says it has a holomorphic target space index ψa, and S−
indicates it transforms as a spinor on Σ.

The index theorem (plus a vanishing theorem) says that if σ = T2 the torus, then

#(ψ− z.m.s.) =
∫

T2
φ∗(c1(T(1,0)N)) =

1
2π

∫
T2

Rab̄dφa ∧ dφ̄b̄ ∈ Z≥0. (16.13)

Hence the number of zero modes sniffs out something topological about the target space.
It’s also true that ψ̄+ is related to ψ− by complex conjugation, so

#ψ− z. m. = #ψ̄+ z.m (16.14)

Now

f (h, g) =

〈
(ψ−)k

(
√

λ)k

(ψ̄+)k

(
√

λ)k

〉
λk = f (λ2h, g)λk. (16.15)

Also, ψ−, ψ̄+ are invariant under the SUSY transformations Q̄+, Q−, so we expect some form of localization.
In fact, one can show that

f (h, g) = nhe−Area(Σ,φ∗g) (16.16)

related to the pullback of the target space metric, where Area(T2, φ∗g) =
∫

T2 gab̄hµν∂µφa∂νφ̄b̄
√

hd2x.
Combining these, we see that

f (h, g) = f (λ2h, g)λk = nλ2he−(Area(g)−k ln λ) = f (λ2h, g′) (16.17)

where g′ is a target metric such that Area(T2, φ∗g′) = Area(T2, φ∗g)− k ln λ.
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However if hµν = δµν, then

Area(T2, φ∗g) = i
∫

T2
gab̄(∂zφa∂z̄φ̄b̄ + ∂z̄φa∂zφ̄b̄)d2z

= 2i
∫

T2
gab̄∂z̄φa∂zφ̄b̄d2z + i

∫
T2

gab̄(∂zφa∂z̄φ̄z̄ − ∂z̄φa∂zφ̄b̄)d2z

= 2i
∫

T2
gab̄∂z̄φa∂zφ̄b̄d2z +

∫
T2

φ∗ω

where ωab̄ = igab̄dφa ∧ dφb̄ is the Kähler form on N. In fact, the correlator localizes on holomorphic maps,
so ∂̄z̄φa = 0 and Area =

∫
T2 φ∗ω.

Thus the effect of rescalng the worldsheet metric hµν → λ2hµν means that∫
φ∗ω →

∫
φ∗ω− i ln λ

2π

∫
T2

Rab̄dφa ∧ dφ̄b̄ (16.18)

using the index theorem for k. That is, the Kähler class (up to exact pieces, i.e. the exterior derivative of
something) is

[ω]→ [ω]− log λ

2π
[R], (16.19)

and this result is exact in the SUSY theory.
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