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Lecture 1.

Symmetries, Fields, and Start-icles: Thursday, October 4, 2018

Today we’ll outline the content of this course and motivate it with a few examples. To begin with,
symmetry as a principle has led physicists all the way to our current model of physics. This course’s
content will be almost exclusively mathematical, yet more pragmatic about introducing the necessary tools
to apply symmetries to the physical systems we’re interested in.
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Resources
◦ Notes (online)

– Nick Manton’s notes (concise, more on geometry of Lie groups)
– Hugh Osborn’s notes (comprehensive, don’t cover Cartan classification)
– Jan Gutowski’s notes (classification of Lie algebras). There is actually a second set of notes on

an earlier version of the course which can be found here, but I believe the notes referred to in
lecture are the first set.

◦ Books: “Symmetries, Lie Algebras and Representations”, Fuchs & Schweigert Ch. 1-7.
Prof. Dorey has also provided his own handwritten notes, which I will be typing up and supplementing
with lecture material here.

Introduction

Definition 1.1. We define a symmetry as a transformation of dynamical variables that leaves the form of
physical laws invariant.

Example 1.2. A rotation is a transformation, e.g. on x ∈ R3 such that x′ = M · x ∈ R3. There are orthogonal
matrices which satisfy MMT = 13 and also special matrices which satisfy det M = 1.

It’s also useful for us to define the notion of a group (likely familiar from an intro course on abstract
algebra or mathematical methods).

Definition 1.3. A group G is a set equipped with a multiplication law (binary operation) obeying
◦ Closure (∀g1, g2 ∈ G, g1g2 ∈ G)
◦ Identity (∃e ∈ Gs.t.∀g ∈ G, eg = ge = g)
◦ Existence of inverses (∀g ∈ G, ∃g−1 ∈ G s.t. g−1g = gg−1 = e)
◦ Associativity (∀g1, g2, g3 ∈ G, (g1g2)g3) = g1(g2g3)).

Exercise 1.4. For rotations G = SO(3), the group of 3-dimensional special orthogonal matrices, check that
the group axioms apply (SO(3) forms a group).1

We also remark that the set may be finite or infinite2.

Definition 1.5. A group G is called abelian if the multiplication law is commutative (∀g1, g2 ∈ G, g1g2 =
g2g1). Otherwise, it is called non-abelian.

We notice that a rotation in R3 depends continuously on 3 parameters: n̂ ∈ S2, θ ∈ [0, π] (with n̂ the axis
of rotation, θ the angle of rotation). This leads us to introduce the idea of a Lie group.

Definition 1.6. A Lie group G is a group which is also a smooth manifold. It’s key that the group and
manifold structures must be compatible, and so G is (almost) completely determined by the behavior “near”
e, i.e. by infinitesimal transformations in a small neighborhood of the identity element e. These correspond
to the tangent vectors to G at e.

The tangent vectors are local objects which span the tangent space to the manifold at some given
point. It turns out that ∀v1, v2 ∈ Te(G) the tangent space of G, we can define a binary operation [, ] :
Te(G)× Te(G)→ Te(G) such that [, ] is bilinear, antisymmetric, and obeys the Jacobi identity.

Definition 1.7. The tangent space at the identity equipped with the Lie bracket defines a Lie algebra L(G).

It’s a remarkable fact that all finite-dimensional semi-simple Lie algebras (over C) can be classified into
four infinite families An, Bn, Cn, Dn with n ∈ N, plus five exceptional cases E6, E7, E8, G2, F4.3 We call this the
Cartan classification.

1We’ll prove this more generally for SO(n) in a few lectures. The answer is in the footnote to Exercise 3.4.
2For example, cyclic groups Zn (i.e. addition in modular arithmetic) vs. most matrix groups like GLn.
3The exceptional groups have not yet come up in physical phenomena, but they seem to have a mysterious connection to the

absence of anomalies in string theory.

http://www.damtp.cam.ac.uk/user/examples/3P2.pdf
http://www.damtp.cam.ac.uk/user/examples/3P2Lb.pdf
http://www.damtp.cam.ac.uk/user/examples/3P2Lc.pdf
http://personal.maths.surrey.ac.uk/st/jg0033/Resources/lectnotes(master).pdf
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Figure 1. The baryon octet. Particles are arranged by their charge along the diagonals and
by their strangeness on the horizontal lines.

Symmetries in physics In classical physics, (continuous) symmetries give rise to conserved quantities.
This is the conclusion of Noether’s theorem.

Example 1.8. Rotations in R3 correspond to conservation of angular momentum, L = (L1, L2, L3).

In quantum mechanics, we have
◦ states: vectors in Hilbert space |ψ〉 ∈ H
◦ observables: linear operators Ô : H → H with (generally) non-commutative multiplication.

We recall from previous courses in QM that operators which commute with the Hamiltonian (e.g. [Ĥ, L̂i] =
0, i = 1, 2, 3) give rise to “quantum conserved quantities.”

In fact, we recall that the angular momentum operators are associated to a Lie bracket: [L̂i, L̂j] = iεijk L̂k.
But this is exactly the L(SO(3)) Lie algebra.

Our angular momentum operators often act on finite-dimensional vector spaces, e.g. electron spin.

|↑〉 ≡
(

1
0

)
, |↓〉 ≡

(
0
1

)
This corresponds to a two-dimensional representation of L(SO(3), i.e. a set of 2× 2 matrices Σi, i = 1, 2, 3
satisfying the same Lie algebra,

[Σi, ΣJ ] = iεijkΣk,

which is provided by setting Σi =
1
2 σi, our old friends the Pauli matrices.

More generally, we should think of a representation as a map e from a Lie group to some space of
transformations on a vector space which preserves the Lie bracket, e([v1, v2]) = [e(v1), e(v2)].

Now suppose we have a rotational symmetry in a quantum system,

[Ĥ, L̂i] = 0, i = 1, 2, 3.

Then the spin states obey Ĥ |↑〉 = E |↑〉 , Ĥ |↓〉 = E′ |↓〉, with E = E′. More generally, degeneracies in the
energy spectrum of quantum systems correspond to irreducible representations of symmetries.

Example 1.9. We have an approximate SU(3) symmetry for the strong force, with

G = SU(3) ≡ {3× 3 complex matrices M with MM† = I3 and det M = 1.}
The spectrum of mesons and baryons are thus defined by the representation of the Lie algebra L(SU(3)).
See also the “eightfold way,” due to Murray Gell-Mann, who showed that plotting the various mesons
and baryons with respect to certain quantum numbers (isospin and hypercharge) gives rise to a very nice
picture corresponding to the 8-dimensional representation of the Lie algebra L(SU(3)).
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Lecture 2.

Symmetry Described Simp-Lie: Saturday, October 6, 2018

So far, we have discussed global symmetries.
◦ Spacetime symmetries:

– Rotation, SO(3).
– Lorentz transformations, SO(3, 1). (Rotations in R3 plus boosts.)
– The Poincaré group (not a simple Lie group, so does not fit Cartan classifications)
– Supersymmetry? (i.e. a symmetry between fermions and bosons, described by “super” Lie

algebra)
◦ Internal symmetries:

– Electric charge
– Flavor, SU(3) in hadrons
– Baryon number

But we also have gauge symmetry.

Definition 2.1. A gauge symmetry is a redundancy in our mathematical description of physics. For instance,
the phase of the wavefunction in quantum mechanics has no physical meaning:

ψ→ eiδψ (2.2)

leaves all the physics unchanged (δ ∈ R).4

Example 2.3. Another gauge symmetry familiar to us is the gauge transformation in electrodynamics,

A(x)→ A(x) +∇χ(x).

By adding the gradient of some scalar function χ of x, this leaves B = ∇×A unchanged (since ∇×∇F = 0)
and so the fields corresponding to the vector potential produce the same physics. Gauge invariance turns
out to be key to our ability to quantize the spin-1 field corresponding to the photon.

Example 2.4. Another example (maybe less familiar in the exact details) is the Standard Model of particle
physics.5 The Standard Model is a non-abelian gauge theory based on the Lie group

GSM = SU(3)× SU(2)×U(1).

We started to describe Lie groups last time. Let us repeat the definition here: a Lie group G is a group
which is also a (smooth) manifold. Informally, a manifold is a space which locally looks like Rn– for every
point on the manifold, there is a smooth map from an open set of Rn to the manifold (that patch “looks
flat”), and these maps are compatible. For cute wordplay reasons, the collection of such maps is known as
an atlas.

Sometimes it is useful to consider a manifold as embedded in an ambient space, e.g. S2 embedded in R3:
x(x, y, z) ∈ R3 such that x2 + y2 + z2 = r2, r > 0.

More generally, we can take the set of all x = (x1, x2, . . . , xn+m) ∈ Rn+m such that for a continuous,
differentiable set of functions Fα(x) : Rn+m → R, α = 1, . . . , m, a space M is defined by all such x satisfying
Fα(x) = 0, α =, 1 . . . , m. That is,

M = {x ∈ Rn+m : Fα(x) = 0, α =, 1 . . . , m} (2.5)

Then the following theorem holds.

Theorem 2.6. M is a smooth manifold of dimension n if the Jacobian matrix J has rank m, with the Jacobian defined

Jα
i =

∂Fα

∂xi
.

In words, all this says is that M is a manifold if Fα imposes a nice independent set of m constraints on our n + m
variables, leaving us with a manifold of dimension n.

4However, differences in phase can have significant effects– see for instance the Aharanov-Bohm effect.
5We’ll unpack the Standard Model more in next term’s Standard Model class.

https://en.wikipedia.org/wiki/Aharonov%E2%80%93Bohm_effect
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Example 2.7. For the sphere S2, we have m = 1, n = 2 and we have the constraint F1(x) = x2 + y2 + z2 − r2

for some r. Then the Jacobian is simply

J = (
∂F1

∂x
,

∂F1

∂y
,

∂F1

∂z
) = 2(x, y, z),

and this matrix indeed has rank 1 unless x = y = z = 0. Therefore we can represent S2 as a manifold of
dimension 2 embedded in R3.

Group operations (multiplication, inverses) define smooth maps on the manifold. The dimension of
G, denoted dim(G), is the dimension of the group manifold M(G). We may introduce coordinates
{θi}, i = 1, . . . , D = dim(G) in some local coordinate patch P containing the identity e ∈ G. Then the group
elements depend continuously on {θi}, such that g = g(θ) ∈ G (the manifold structure is compatible with
group elements). Set g(0) = e.

Thus if we choose two points θ, θ′ on the manifold M, group multiplication,

g(θ)g(θ′) = g(φ) ∈ G,

corresponds to (induces) a smooth map φ : G× G → G which can be expressed in coordinates

φi = φi(θ, θ′), i = 1, . . . , D

such that g(0) = e =⇒
φi(θ, 0) = θi, φi(0, θ′) = θ′

i.
We ought to be a little careful that our group multiplication doesn’t take us out of the coordinate patch
we’ve defined our coordinates on, but in practice this shouldn’t cause us too many problems.

Similarly, group inversion defines a smooth map, G → G. This map can be written as follows:

∀g(θ) ∈ G, ∃g−1(θ) = g(θ̃) ∈ G

such that
g(θ)g(θ̃) = g(θ̃)g(θ) = e.

In coordinates, the map
θ̃i = θ̃i(θ), i = 1, . . . , D

is continuous and differentiable.

Example 2.8. Take the Lie group G = (RD,+) (Euclidean D-dimensional space with addition as the group
operation). Then the map defined by group multiplication is simply

x′′ = x + x′∀x, x′ ∈ RD

and similarly the map defined by group inversion is

x−1 = −x∀x ∈ RD.

This is a bit boring since the group multiplication law is commutative, so we’ll next look at some important
non-abelian groups– namely, the matrix groups.

Matrix groups Let Matn(F) denote the set of n× n matrices with entries in a field F = R or C. These
satisfy some of the group axioms– matrix multiplication is closed and associative, and there is an obvious
unit element, e = In ∈ Matn(F) (with In the n× n unit matrix). However, Matn(F) is not a (multiplicative)
group because not all matrices are invertible (e.g. with det M = 0). (Since it is not a group, it is also not a
Lie group, though it does have a manifold structure, that of Rn2

.) Thus, we define the general linear groups.

Definition 2.9. The general linear group GL(n, F) is the set of matrices defined by

GL(n, F) ≡ {M ∈ Matn(F) : det M 6= 0}. (2.10)

Definition 2.11. We also define the special linear groups SL(n, F) as follows:

SL(n, F) ≡ {M ∈ GL(n, F) : det M = 1.} (2.12)

Here, closure follows from the fact that determinants multiply nicely, ∀M1, M2 ∈ GL(n, F), det(M1M2) =
det(M1)det(M2) = 1 for SL(n, F) (is nonzero for GL(n, F)), and existence of inverses follows from the
defining condition that det M 6= 0.
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It’s less obvious that GL(n, F) and SL(n, F) are also Lie groups. In fact, our theorem (Thm. 2.6) applies
here: the condition that det M = ±1 corresponds to a nice F(x) = det M− 1, x ∈ Rn2

, which is sufficently
nice as to define a manifold. The same is true for SL(n, F), so these are indeed Lie groups. Note the
dimensions of these sets are as follows.

dim(GL(n,R)) = n2 dim(GL(n,C)) = 2n2

dim(GL(n,R)) = n2 − 1 dim(SL(n,C)) = 2n2 − 2
And now, a bit of extra detail on the dimensions and manifold properties of these Lie groups. In Matn(F),
we have our free choice of any numbers we like in F for the n2 elements of our matrix. It turns out that
imposing det M 6= 0 is not too strong a constraint– it eliminates a set of zero measure from the space of
possible n× n matrices, so we have our choice of n2 real numbers in GL(n,R) and n2 complex numbers
(so 2n2 real numbers) in GL(n,C). Requiring that det M 6= 0 means we can equivalently view GL(n,R) as
the preimage of an open set in R (since det M : Rn2 → R) under a continuous (and smooth!) map, which
is therefore an open set in Rn2

. It turns out that any open set in Rn2
is itself a manifold (really, any open

subset of a manifold), so GL(n,R) is indeed a manifold.
Note that the situation is easier in SL(n, F), since our theorem then applies with F = det M− 1. The

corresponding Jacobian has rank 1 unless all the matrix elements vanish identically, so SL(n, F) is a
manifold Imposing the restriction that det M = 1 is now a stronger algebraic condition– it reduces our
choice of values by 1, since if we have picked n2 − 1 values of the matrix, the last value is completely
determined by det M = 1. Thus the dimension of SL(n,R) is n2 − 1. Since we get to pick n2 − 1 complex
numbers in SL(n,C) (equivalently there are two real constraints, one on the real components and one on
the imaginary ones), that amounts to 2(n2 − 1) = 2n2 − 2 real numbers. Hence, dimension 2n2 − 2.

Definition 2.13. A subgroup H of a group G is a subset (H ⊆ G) which is also a group. We write it as
H ≤ G. If H is also a smooth submanifold of G, we call H a Lie subgroup of G.

Lecture 3.

Here Comes the SO(n): Tuesday, October 9, 2018

Having introduced the matrix groups, we’ll next discuss some important subgroups of GL(n,R). First,
the orthogonal groups.

Definition 3.1. Orthogonal groups O(n) are the matrix groups which preserve the Euclidean inner product,

O(n) = {M ∈ GL(n,R) : MT M = IN}. (3.2)

Their elements correspond to orthogonal transformations, so that for v ∈ Rn, an orthogonal matrix M acts
on v by matrix multiplication,

v′ = M · v
and so in particular

|v′|2 = v′T · v′ = vT ·MT M · v = vT · v = |v|2.
It also follows that ∀M ∈ O(n), det(MT M) = det(M)2 = det(In) = 1 =⇒ det M = ±1.

det M is a smooth function of the coordinates, but our constraint equation means that det M can only
take on one of two discrete values. The orthogonal group O(n) has therefore two connected components
corresponding to det M = +1 and det M = −1. The connected component containing the origin (det M =
+1) is the special orthogonal group SO(n).

Definition 3.3. The special orthogonal groups SO(n) are the subset of orthogonal groups which also preserve
orientation (i.e. no reflections):

SO(n) ≡ {M ∈ O(n) : det M = +1}.
That is, elements of SO(n) preserve the sign of the volume element in Rn,

Ω = εi1i2 ...in vi1
1 vi2

2 . . . vin
n .

In contrast, O(n) matrices may include reflections as well as rotations when det M = −1.
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Exercise 3.4. Check the group axioms for SO(n).6 Show that dim(O(n)) = dim(SO(n)) = 1
2 n(n− 1).7

Orthogonal matrices have some nice properties. Let M ∈ O(n) be an orthogonal matrix and suppose
that vλ is an eigenvector of M with eigenvalue λ. Then the following is true:

(a) If λ is an eigenvalue, then λ∗ is also an eigenvalue (eigenvalues of M come in complex conjugate
pairs).

(b) |λ|2 = 1.
The proof is as follows:

(a) M · vλ = λvλ =⇒ M · v∗λ = λ∗v∗λ (since M is a real matrix).8

(b) For any complex vector v, we have

(M · v∗)T ·M · v = v† ·MT M · v = v† · v.

Now if v = vλ, then

(M · v∗λ)T ·M · vλ = (λ∗v∗λ)
T · (λvλ) = |λ|2v†

λ · vλ.

By comparison to the first expression, we see that |λ|2 = 1. �

Example 3.5. For the group G = SO(2), M ∈ SO(2) =⇒ M has eigenvalues

λ = eiθ , e−iθ

for some θ ∈ R, θ ∼ θ + 2π (identified up to a phase of 2π). A group element may be written explicitly as

M = M(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

which is uniquely specified by a rotation angle θ. Therefore the group manifold of SO(2) is M(SO(2)) ∼= S1,
the circle, and we see that SO(2) is an abelian group..

It’s not too hard to check using the trig addition formulas that the matrices M written this way really do
form a representation of SO(2), since M(θ1)M(θ2) = M(θ1 + θ1).

Example 3.6. For the group G = SO(3), we have instead M ∈ SO(3) =⇒ M has eigenvalues

λ = eiθ , e−iθ , 1

for θ ∈ R, θ ∼ θ + 2π, using our two properties again of paired eigenvalues and modulus 1. The normalized
eigenvector for λ = 1, n̂ ∈ R3, specifies the axis of rotation (M · n̂ = n̂ and n̂ · n̂ = 0).

A general group element of SO(3) can be written explicitly as

M(n̂, θ)ij = cos θδij + (1− cos θ)ninj − sin θεijknk. (3.7)

Let us remark that our group is invariant under the identification θ → 2π − θ, n̂→ −n̂. It’s also true that
we should identify all M with θ = 0 since M(n̂, 0) = I3∀n̂.

We also observe that we can consider the vector

w ≡ θn̂

6As usual, we need to check closure and inverses. The identity matrix I satisfies IT I = I and det I = 1, and associativity
follows from standard matrix multiplication. Inverses: if M ∈ SO(n), then M−1 is defined by MM−1 = I. But det(MM−1) =
det(M)det(M−1) = (1)det(M−1) = det I = 1, so det(M−1) = 1. We also check that the inverse of an orthogonal matrix is also
orthogonal: MM−1 = I, so (M−1)T(MT) = (M−1)T M−1 = IT = I. Closure: ∀M, N ∈ SO(n), det(MN) = det(M)det(N) = (1)(1) =
1 and (MN)T(MN) = NT MT MN = I, so MN ∈ SO(n). �

7This can be seen by writing a matrix M ∈ SO(n) as a row of n column vectors (x1, x2, . . . , xn). Then the condition that

MT M = 1 is equivalent to


x1 · x1 x1 · x2 . . . x1 · xn
x2 · x1 x2 · x2 . . . x2 · xn

...
xn · x1 . . . . . . xn · xn

 = In. We see that by the symmetry of the explicit form of MT M, we get

1 + 2 + 3 + . . . + n = n(n + 1)/2 independent constraints on the n2 entries of M. Applying our theorem, we find that the resulting
manifold has dimension n2 − n(n + 1)/2 = n(n− 1)/2.

8This is generally true of real matrices with complex eigenvalues– it’s not specific to orthogonal matrices.
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Figure 2. The group manifold M(SO(3)) is isomorphic to the 3-ball B3 with antipodal
points on the boundary identified, w ∼ −w∀w ∈ ∂B3.

which lives in the region
B3 = {w ∈ R3 : |w| ≤ π} ⊂ R3

with boundary
∂B3 = {w ∈ R3 : |w| = π} ∼= S2.

We say that the group manifold M(SO(3)) then comes from identifying antipodal points on ∂B3 (w ∼
−w∀w ∈ ∂B3). See Fig. 2 for an illustration.

Definition 3.8. A compact set is any bounded, closed set in Rn with n ≥ 0. For instance, the 2-sphere S2

is clearly bounded in R3. But the hyperboloid H2 (embedded in R3 as x2 + y2 − z2 = r2) is not bounded,
since for any distance r0 one can construct a point x on H2 which has |x| > r0.

Let us note some properties of the group manifold M(SO(3)). It is compact and connected, but it is not
simply connected.

Definition 3.9. A space is simply connected if all loops on the space are contractible (in the language of
algebraic topology, its fundamental group π1 is trivial).

A bit of intuition for why M(SO(3)) is topologically non-trivial: draw a path to the boundary, come out
on the antipodal side, and go back to the origin. As it turns out, this is different from S1 or the torus T2:
whereas these have the full Z as (part of) their fundamental groups (T2 is simply S1 × S1), if we go around
twice in SO(3) we find that this new loop is actually a trivial loop (see Fig. 3). Therefore the fundamental
group of SO(3) is not infinite but the cyclic group Z2 (i.e. the set {0, 1} under the group operation +
mod 2).

Lecture 4.

Here Comes the SU(n): Thursday, October 11, 2018

Last time, we discussed SO(3) which was a compact submanifold of GL(n,R). But there are also
non-compact subgroups we should consider. We introduced the orthogonal group of matrices M ∈ O(n)
which preserve the Euclidean metric on Rn, i.e.

g = diag{+1,+1, . . . + 1}, MT gM = g.

But we may also generalize almost immediately to a metric with a different signature.



4. Here Comes the SU(n): Thursday, October 11, 2018 9

Figure 3. A sketch of why the loop which goes through the boundary ∂B3 twice is
homotopic to (can be continuously deformed into) the trivial loop. For simplicity, consider
a circular cross-section of B3 and suppose the loop passes through the boundary at points
A (∼ A′) and B (∼ B′). As we continuously move the point B to A′, B′ must also move
towards A, as we see in the second image. We then pull the bit of loop from A′ to B
through the boundary and find that the resulting loop is trivial (sketch 3). Solid black lines
indicate the actual loop path, red dashed arrows indicate the effect of identifying antipodal
points, and purple arrows suggest the direction of loop deformation between each drawing.

Definition 4.1. O(p, q) transformations preserve the metric of signature (p, q) on Rp,q, where

η =

(
Ip 0
0 −Iq

)
.

Then O(p, q) is defined by

O(p, q) = {M ∈ GL(p + q,R) : MTηM = η}.

SO(p, q) is defined equivalently as

SO(p, q) = {M ∈ O(p, q) : det M = 1}.

Example 4.2. The (full) Lorentz group O(3, 1) preserves the Minkowski metric. We could consider SO(1, 1),
which takes the form

M =

(
cosh φ sinh φ
sinh φ cosh φ

)
with φ ∈ R the rapidity. This is just a Lorentz boost in one direction, parametrized by the rapidity.

It’s also useful to discuss subgroups of GL(n,C) (matrices with complex entries).

Definition 4.3. We introduce the unitary transformations, defined by

U(n) = {U ∈ GL(N,C) : UU† = In}.

Such transformations therefore preserve the inner product of complex vectors v ∈ Cn, with |v|2 = v† · v.
These also form a Lie group (we need to look at the constraints imposed by the UU† condition and apply
our implicit function theorem to confirm that this is really a manifold).

The unitary transformations have the condition that since U ∈ U(n) =⇒ U†U = In =⇒ |det U|2 = 1.
Thus det U = eiδ, δ ∈ R. Whereas in O(n) we had two discrete possibilities for det M leading to two
connected components, we see that in U(n) we can parametrize our matrices by a continuous δ and so we
expect O(n) as a manifold to be connected.

Definition 4.4. We may also define the special unitary group, SU(N).

SU(n) = {U ∈ U(n) : det U = 1}.
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How big is U(n)? A priori we get 2n2 choices of real numbers. But the matrix equation UU† = I is
constrained since UU† is Hermitian, and so we get 2× 1

2 n(n− 1) constraints from the entries above the
diagonal +n constraints since the elements on the diagonal are real. Therefore we get N2 − n + n = n2

constraints, and

dim(U(n)) = 2n2 − n2 = n2.

What about for SU(n)? Normally det U = 1 would give two constraints for a general complex number,
but we know that det U = eiδ for U ∈ U(n), so we only get one constraint out of this condition (effectively
setting our parameter δ to 1). Thus

dim(SU(n)) = n2 − 1.

Example 4.5. SU(1) would have dimension 1− 1 = 0, which is not interesting, so the first interesting
subgroup of GL(n,C) is then U(1), with dimension 1:

U(1) = {z ∈ C : |z| = 1}.

This has the group manifold structure of a circle, but we’ve seen another group with the same manifold
structure: SO(2)! In light of this, we would like to have some notion that two groups are really “the same,”
motivating the following definition.

Definition 4.6. A group homomorphism is a function J : G → G′ such that

∀g1, g2 ∈ G, J(g1g2) = J(g1)J(g2).

In other words, the group structure is preserved and group multiplication commutes with applying the
homomorphism.

Definition 4.7. An isomorphism is a group homomorphism which is a one-to-one smooth map G ↔ G′. We
say that two Lie groups G, G′ are isomorphic if there exists an isomorphism between them.

Example 4.8. Take a general element z = eiθ ∈ G = U(1, θ ∈ R. Thus define

M(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ G′ = SO(2).

Then our group homomorphism is

J : z(θ) = eiθ → M(θ) ∈ SO(2).

It’s straightforward to check that

J(z(θ1)z(θ2)) = M(θ1 + θ2)

= M(θ1)M(θ2)

= J(z(θ1))J(z(θ2))

=⇒ U(1) ' SO(2).

Example 4.9. Now consider G = SU(2). dim(SU(2) = 21 − 1 = 3, and we can write elements of SU(2) as

U = a0 I2 + ia · σ,

where σ = (σ1, σ2, σ3) are the Pauli matrices, a0 ∈ R, a ∈ R3, and

a2
0 + |a|2 = 1.

We’ve seen another group of the same dimension, SO(3), but we remark that these are not isomorphic to
each other. From our parametrization of SU(2), we see that M(SU(2) = S3 the three-sphere, but

π1(S3) = ∅, π1(M(SO(3)) = Z2,

so they cannot be isomorphic.
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Lie algebras

Definition 4.10. A Lie algebra g is a vector space (over a field F = R or C) equipped with a bracket. A bracket
is an operation

[, ] : g× g→ g

which has the following properties:
(a) antisymmetry, ∀X, Y ∈ g, [X, Y] = −[Y, X]
(b) linearity, [αX + βY, Z] = α[X, Z] + β[Y, Z]∀α, β ∈ F, ∀X, Y, Z ∈ g
(c) the Jacobi identity, ∀X, Y, Z ∈ g, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Note that if a vector space V has an associative multiplication law ∗ : V ×V → V (that is, (X ∗ Y) ∗ Z =
X ∗ (Y ∗ Z)), we can make a Lie algebra by simply defining the bracket as

[, ] = X ∗Y−Y ∗ X∀X, Y ∈ V.

This is pretty easy to prove and we will do so on an example sheet. The most obvious choice is V a vector
space of matrices and ∗ ordinary matrix multiplication.

The dimension of g is the same as the dimension of the underlying vector space V (since we have just
equipped V with some extra structure).

Note that we could choose a basis

B = {Ta, a = 1, . . . , n = dim(g)}

such that

∀X ∈ g, X = XaTa ≡
n

∑
a=1

XaTa, Xa ∈ F.

That is, we can decompose a general element of g into its components Xa. Then we observe that for X, Y ∈ g,
we can always compute

[X, Y] = XaYb[Ta, Tb]

in this basis Ta.

Definition 4.11. We therefore see that a general Lie bracket is defined by the structure constants f ab
c , given

by

[Ta, Tb] = f ab
c Tc.

Once we compute these with respect to a basis, we know how to compute any Lie bracket of two general
elements. Since the structure constants come from a Lie bracket, they obey antisymmetry in the upper
indices,

f ab
c = − f ab

c ,

and also (exercise) a variation of the Jacobi identity,

f ab
c f cd

e + f da
c f cb

e + f bd
c f ca

e = 0.

Lecture 5.

Lie Algebras from Lie Groups: Saturday, October 13, 2018

Last time, we defined a Lie algebra as a vector space with some extra structure, the Lie bracket [, ].

Definition 5.1. Two Lie algebras g, g′ are isomorphic if ∃ a one-to-one linear map f : g→ g′ such that

[ f (X), f (Y)] = f ([X, Y]∀X, Y ∈ g.

Therefore the isomorphism respects the Lie bracket structure (with the bracket being taken in g or g′ as
appropriate).

Definition 5.2. A subalgebra h ⊆ g is a subset which is also a Lie algebra. This is equivalent to a subgroup
in group theory.
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Definition 5.3. An ideal of g is a subalgebra h of g such that

[X, Y] ∈ h∀X ∈ g, Y ∈ h.

This is the equivalent to a normal subgroup in group theory. Note that every g has two trivial ideals:

h = {0}, h = g.

Every g also has the following two ideals:

Example 5.4. The derived algebra, all elements i such that

i = {[X, Y] : X, Y ∈ g}.

Example 5.5. The centre (center) of g, ξ(g):

ξ(g) = {X ∈ g : [X, Y] = 0∀Y ∈ g.}

Definition 5.6. An abelian Lie algebra g is then one for which [X, Y] = 0∀X, Y ∈ g (i.e. ξ(g) = g, the center
of the group is the whole group).

Definition 5.7. g is simple if it is non-abelian and has no non-trivial ideals. This is equivalent to saying that

i(g) = g.

Simple Lie algebras are important in physics because they admit a non-degenerate inner product (related
to Killing forms). These ideas will also lead us to classify all complex simple Lie algebras of finite dimension.

Lie algebras from Lie groups The names of these structures makes it seem that they ought to be related
in some way. Let’s see now what the connection is. Let M be a smooth manifold of dimension D and take
p ∈ M a point on the manifold. Since M is a manifold, we may introduce coordinates in some open set
containing p.

Let us call the coordinates
{xi}, i = 1, . . . , D

and set p to lie at the origin, xi = 0. Now we will denote the tangent space to M at p by Tp(M), and define
the tangent space as the vector space of dimension D spanned by

{ ∂

∂xi
}, i = 1, . . . , D.

A general tangent vector V is then a linear combination of the basis elements, given by components Vi:

V = Vi ∂

∂xi ∈ Tp(M), Vi ∈ R.

Tangent vectors then act on functions of the coordinates f (x) by

V f = vi ∂ f (x)
∂xi |x=0

(they are local objects, so they only live at the point x = 0). Consider now a smooth curve

C : I ⊂ R→ M

(if we like, one can normalize I to a unit interval) passing through the point p. In coordinates,

C : t ∈ I 7→ xi(t) ∈ R, i = 1, . . . , D.

This curve is smooth if the {xi(t)} are continuous and differentiable.
The tangent vector to the curve C at point p is then

VC ≡ ẋi(0)
∂

∂xi ∈ Tp(M)

where ẋi(t) = dxi(t)
dt . This is simply the directional derivative from multivariable calculus. When we act

with this tangent vector on a function f , we then get

Vc f = ẋi(0)
∂ f (x)

∂xi |x=0.
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Now to compute the Lie algebra L(G) of a Lie group G, let G be a Lie group of dimension D. Introduce
coordinates {θi}, i = 1, . . . , D in some region around the identity element e ∈ G. Now we can look at the
tangent space near the identity,

Te(G).
Note that Te(G) is a real vector space of dimension D, and we can define a bracket

[, ] : Te(G)× Te(G)→ Te(G)

such that
(Te(G), [, ])

defines a Lie algebra.

Example 5.8. The easiest case is matrix Lie groups. For instance,

G ⊂ Matn(F)

for n ∈ N, F = R or C. We can turn the map from tangent vectors to matrices:

ρ : Vi ∂

∂θi ∈ Te(G) 7→ Vi ∂g(θ)
∂θi |θ=0

such that g(θ) ∈ G ⊂ Matn(F). We will identify Te(G) with the span of

{∂g(θ)
∂θi |θ=0}, i = 1, . . . D.

Effectively, we’ve parametrized elements of our group (e.g. by our local coordinate system) and then
identified the tangent space with the span of the D tangent vectors which describe how our parametrized
group elements change with respect to the D coordinates.

Now we have a candidate for the bracket. Let’s choose

[X, Y] ≡ XY−YX∀X, Y ∈ Te(G)

where XY indicates matrix multiplication. That is, the “bracket” here is really just the matrix commutator.
This is clearly antisymmetric and linear, and with a little bit of algebra one can show it also obeys the Jacobi
identity. But there’s one other condition– the algebra must be closed under the bracket operation. It’s not
immediately obvious that this is true, so we’ll prove it explicitly.

Let C be a smooth curve in G passing through e,

C : t 7→ g(t) ∈ G, g(0) = In.

We require that g(t) is at least C1 smooth, G(t) ∈ C1(M), t ≥ 0. (It has at least a first derivative.) Now
consider the derivative

dg(t)
dt

=
dθi(t)

dt
∂g(θ)

∂θi .

It follows that

ġ(0) =
dg(t)

dt
|t=0 = θ̇i(0)

∂g(θ)
∂θi |θ=0 ∈ Te(G).

This is a tangent vector to C at the point e. ġ(0) ∈ Matn(F), but more generally this element of the tangent
space need not be in the group.

Near t = 0 we have
g(t) = In + Xt + O(t2), X = ġ(0) ∈ L(G).

We expand our curve to first order in t near t = 0. For two general elements X1, X2 ∈ L(G), we find curves

C1 : t 7→ g1(t) ∈ G, C2 : t 7→ g2(t) ∈ G

such that
g1(0) = g2(0) = In

and
ġ1(0) = X1, ġ2(0) = X2.

Then the maps g1, g2 can also be expanded to order t2 near t = 0,

g1(t) = In + X1t + W1t2 + . . . , g2(t) = In + X2t + W2t2 + . . .
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for some W1, W2 ∈ Matn(F). Next time, we’ll show that the bracket gives a nice structure for

W(t) ≡ g−1
1 (t)g−1

2 (t)g1(t)g2(t).

Lecture 6.

Examples of Lie Algebras: Tuesday, October 16, 2018

Today, we’ll finish the proof that the tangent space of a Lie group G at the origin, Te(G), equipped with
the bracket operation [X, Y] = XY−YX for X, Y ∈ Te(G) forms a Lie algebra. Specifically, we must prove
that L(G) is closed under the bracket.

The game plan is as follows. We want to show that for any two elements X, Y ∈ Te(G), their Lie bracket
[X, Y] is also in the tangent space. Therefore we will explicitly construct a curve in G out of other elements
we know are in G such that our new curve has exactly the Lie bracket [X, Y] as its tangent vector near t = 0.

Recall that last time, we considered two curves C1 : t 7→ g1(t) ∈ G and C2 : t 7→ g2(t) ∈ G which are at
least twice differentiable, and by definition the tangent vectors (i.e. first derivative) of these curves give rise
to two elements X1, X2 in the Lie algebra L(G). These curves had the properties that at t = 0,

g1(0) = g2(0) = In

with In the identity matrix, and
ġ1(0) = X1, ġ2(0) = X2.

We proceeded to expand them to order t2, writing

g1(t) = In + X1t + W1t2 + O(t3) and g2(t) = In + X2t + W2t2 + O(t3).

Now define the element
h(t) ≡ g−1

1 (t)g−1
2 (t)g1(t)g2(t).

Because h(t) is constructed via group multiplication in G, h is also in G. Under an appropriate reparametri-
zation, this will be the curve we want. We can rewrite this equation as

g1(t)g2(t) = g2(t)g1(t)h(t).

Plugging in our expansions of g1, g2 we find that

g1(t)g2(t) = In + t(X1 + X2) + t2(X1X2 + W1 + W2) + O(t3)

and similarly
g2(t)g1(t) = In + t(X1 + X2) + t2(X2X1 + W1 + W2) + O(t3).

If we now expand
h(t) = In + w1t + w2t2 + O(t3),

we find that9

w1 = 0, w2 = X1X2 − X2X1 = [X1, X2].
Now let us define a new curve,

C3 : s 7→ g3(s) = h(+
√

s) ∈ G

parametrized by some s ∈ R. We need t ≥ 0 so s > 0, s = t2. Near s = 0, we have

g3(s) = In + s[X1, X2] + O(s3/2) =⇒ ġ3(0) =
g3(s)

ds
|s=0 = [X1, X2] ∈ L(G).

So indeed the bracket operation [X1, X2] corresponds to another element in the tangent space.10 All is well
and thus L(G) = (Te(G), [, ]) is a real Lie algebra of dimension D. �

9It’s straightforward, so I’ll do it here. Explicitly, if we expand to order t we get g2g1W(t) = I +(X1 +X2 +w1)t. But by comparison
to the expression for g1g2 we see that w1 = 0. So we have to go to order t2: g2g1W(t) = I + (X1 + X2)t + (w2 + W1 + W2 + X2X1).
Now comparing again we find that w2 + X2X1 = X1X2, or equivalently w2 = X1X2 − X2X1 = [X1, X2].

10We might want to make sure that the tangent vector of our curve is really well-defined at s = 0– in particular, we might be
concerned about s < 0. To be really thorough, we can define h̃(t) = g2(t)−1g1(t)−1g2(t)g1(t) and by a similar process extend the
curve h to negative s. This doesn’t add anything to our proof but it can certainly be done and one can check that the first derivatives
of h and h̃ match at s = 0.
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Example 6.1. Let G = SO(2). Then

g(t) = M(θ(t)) =
(

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)
with θ(0) = 0. So the tangent space is spanned by elements of the form

ġ(0) =
(

0 −1
+1 0

)
θ̇(0)

and therefore

L(SO(2)) =
{(

0 −c
c 0

)
, c ∈ R

}
The Lie algebra of SO(2) is therefore the set of 2× 2 real antisymmetric matrices.

Example 6.2. Let G = SO(n). Now our curve is g(t) = R(t) ∈ SO(n) with R(0) = In, and the defining
equation of SO(n) says that

RT(t)R(t) = In∀t ∈ R.

Differentiating with respect to t (if you like, we’re looking at the leading order behavior by expanding
R(0) + Ṙ(0)t) we find that

ṘT(t)R(t) + RT(t)Ṙ(t) = 0 =⇒ XT + X = 0,

where as usual we let X = Ṙ(0) = dR(t)
dt |t=0. Therefore we learn that

XT = −X,

or in other words, X is antisymmetric.
One might worry about the determinant condition, but in fact since any matrix close to the identity

already has determinant 1 (recall that O(n) has two connected components with det R = ±1), the det R = 1
condition does not impose an additional constraint, so moreover

L(O(n)) = L(SO(n)) = {X ∈ Matn(R) : XT = −X.}

The Lie algebra of O(n) and SO(n) is the set of real n × n antisymmetric matrices, and by counting
constraints we see it has dimension 1

2 n(n− 1).

Example 6.3. We can play the same game with G = SU(n). Let g(t) = U(t) ∈ SU(n), U(0) = In. THen

U†(t)U(t) = In∀t ∈ R.

Differentiating and setting t = 0 we find that

Z† + Z = 0

where Z = U̇(0) ∈ L(SU(n)).
We also have the condition that det U(t) = 1∀t ∈ R.11 Let’s expand U(t) = In + Zt + O(t2) near t = 0.

As an exercise, one may prove that det U(t) = 1 + Tr(Z)t + O(t2), and so det U(t) = 1∀t =⇒ Tr(Z) = 0.
Thus

L(SU(n)) = {Z ∈ Matn(C) : Z† = −Z, Tr(Z) = 0, }
the set of complex n× n antihermitian traceless matrices.

What is the dimension of L(SU(n))? We get 2× 1
2 n(n− 1) real constraints from the entries above the

diagonal, n constraints forcing the real parts of the diagonal entries to be zero, and 1 constraint from the
tracelessness condition. Thus we have n2 + 1 total constraints and dimension 2n2 − (n2 + 1) = n2 − 1.

11This didn’t matter in the real case, but here we don’t have the same disconnected structure as in O(n). The determinant need
only have unit magnitude, |det U|2 = 1, and so we get an extra constraint. Practically speaking, we see that antisymmetry already
forced X ∈ L(O(n)) to be traceless, whereas this is not the case for SU(n).
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Example 6.4. With our results for the general SU(n) in hand, we can take the specific example of G = SU(2).
The Lie algebra is the set of 2× 2 traceless antihermitian matrices, and it should have dimension 22 − 1 = 3.
But we already know of three linearly independent matrices which (nearly) satisfy this property: they are
the Pauli matrices from quantum mechanics.

σa = σ†
a , Trσa = 0, a = 1, 2, 3

We can define Ta = − 1
2 iσa (so that Ta is antihermitian rather than hermitian). Recall the Pauli matrices

obey
σaσb = δab I2 + iεabcσc,

so it is straightforward to compute the Lie bracket on Ta,

[Ta, Tb] = −1
4
[σa, σb] = −

1
2

iεabcσc = f ab
c Tc

where
f ab
c = εabc

(note that indices up and down are not so important here– they are just labels and do not indicate any sort
of covariant behavior as in relativity).

However, we can also compare with SO(3), which we computed the Lie group for earlier. Recall that

L(SO(3)) = {3× 3real antisymmetric matrices},

and dim(L(SO(3)) = 1
2 n(n− 1)|n=3 = 3. A convenient basis is

T̃1 =

0 0 0
0 0 −1
0 1 0

 , T̃2 =

 0 0 1
0 0 0
−1 0 0

 , T̃3 =

0 −1 0
1 0 0
0 0 0

 .

These are clearly linearly independent and satisfy the antisymmetry condition. More compactly, we can
also write

T̃a
bc = −εabc,

and then with respect to this basis, the Lie bracket is

[T̃a, T̃b] = f ab
c T̃c

where f ab
c = εabc, a, b, c = 1, 2, 3.

But these are exactly the same structure constants we found for L(SU(2)), and so we find that the Lie
algebras are isomorphic:

L(SO(3)) ' L(SU(2)).

This is interesting since SO(3) 6' SU(2), i.e. the original groups are not isomorphic.12 However, it will turn
out that SO(3) = SU(2)/Z2, i.e. one can say that SU(2) is the double cover of SO(3).

Lecture 7.

Lost in Translation(s): Thursday, October 18, 2018

Today, we’ll revisit the idea of Lie algebras from Lie groups. A Lie group is a very special type of
manifold because it is equipped with a group structure, and this means that it comes with some nice maps
on the manifold built-in.

Definition 7.1. In particular, for each element h ∈ G a Lie group, we have smooth maps

Lh : G → G, g ∈ G 7→ hg ∈ G

and
Rh : G → G, g ∈ G 7→ gh ∈ G

known as left- and right-translations.

12One way to see this is by remembering that SO(3) has the manifold structure of B3, while SU(2) has the structure of S3.
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We’ll understand the meaning of this term more clearly in just a minute, but we can already see that
these maps are surjective (their image includes every element of the group),

∀g′ ∈ G∃g = h−1g′ ∈ G =⇒ Lh(g) = g′

and injective (for every element of the image, the inverse is unique), ∀g, g′ ∈ G, Lh(g) = Lh(g′) =⇒ g = g′

since
Lh(g) = Lh(g′) =⇒ hg = hg′ =⇒ g = g′

by the existence of unique inverses under group multiplication. �
Thus the inverse map,

(Lh)
−1 = Lh−1 ,

also exists and is smooth.

Definition 7.2. We say that Lh and Rh are diffeomorphisms of G (i.e. an isomorphism such that both the map
and its inverse are smooth).

To concretely understand how Lh acts on elements of G, we therefore introduce coordinates {θi}, i =
1, . . . , D in some region containing the identity element e:

g = g(θ) ∈ G, g(0) = e.

Let g′ = g(θ′) = Lh(g) = hg(θ). A priori, g′ need not be in the same coordinate patch as g, but because G
is a manifold, we have some nice transition functions which will allow us to describe g′ in compatible local
coordinates.

To avoid these complications, let us assume for now that g and g′ are in the same coordinate patch as g.
In coordinates, Lh is then specified by D real functions on the coordinates θ,

θ′
i
= θ′

i
(θ), i = 1, . . . , D.

As Lh is a diffeomorphism, the Jacobian matrix

Ji
j(θ) =

∂θ′ i

∂θ j

exists and is invertible (i.e. det J 6= 0).

Definition 7.3. However, the map Lh : G → G now induces a map L∗h from tangent vectors at g to the
tangent space to Lh(g) = hg ∈ G. That is,

L∗h : Tg(G)→ Thg(G).

In coordinates, we see that L∗h maps a tangent vector V = Vi ∂
∂θi in the original coordinates:

L∗h : V = Vi ∂

∂θi ∈ Tg(G) 7→ V′ = V′ i
∂

∂θ′ i
∈ Thg(G)

with
V′ i = Ji

j(θ)V
j.

We call this map L∗h the differential of Lh.

In words, we have moved a tangent vector at g to hg by rewriting it in terms of the derivatives ∂/∂θ′ with
respect to the local coordinates at hg, and the components Vi transform by multiplication by the Jacobian.
This is pretty powerful– left translation lets us move tangent vectors from near the identity to anywhere we
like on the group manifold! We’ll see that this has consequences for the structure of the Lie algebra as well.

Definition 7.4. A vector field V on G specifies a tangent vector V(g) ∈ Tg(G) at each point g ∈ G. In
coordinates,

V(θ) = Vi(θ)
∂

∂θi ∈ Tg(θ)(G).

We say a vector field is smooth if the component functions Vi(θ) ∈ R, i = 1, . . . , D are differentiable.
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In fact, starting from a single tangent vector at the identity

ω ∈ Te(G),

we can then define a vector field using left-translation.

V(g) = L∗g(ω)∀g ∈ G.

So now we’re leaving the tangent vector fixed and moving it all around our manifold using the differential
map L∗g. But since L∗g is smooth and invertible, V(g) is smooth and non-vanishing. To see this, suppose L∗g
sent some ω 6= 0 to v′ = 0. Since the components of ω transform with the Jacobian matrix, this implies that
the Jacobian matrix has a zero eigenvalue (i.e 0 = Ji

jV
j). But we said the Jacobian matrix was invertible, so

this is a contradiction (otherwise J−1 could send the zero vector to something nonzero, J−1i
j0 = Vi, Vi 6= 0).

Then starting from a basis {ωa}, a = 1, . . . , D for Te(G), we get D independent nowhere-vanishing vector
fields on G,

Va(g) = L∗g(ωa), a = 1, . . . , D.

This turns out to already be a very strong constraint on what manifolds admit Lie groups.

Example 7.5. By the “hairy ball theorem,” any smooth vector field on S2 has at least two zeros.13 Therefore
M(G) 6' S2.

In fact, if G is compact and dim(G) = 2, the only possible manifold structure is M(G) = T2 = S1 × S1

the torus, corresponding to the group structure U1 ×U1.

Definition 7.6. Note that Va(g), a ∈ 1, . . . , D are called left-invariant vector fields on G. They obey

L∗hVa(g) = L∗h ◦ L∗g(ωa) = L∗hg(ωa) = Va(hg).

This has some very nice consequences for the structure of the Lie algebra– for more on this, see the appendix
to Prof. Dorey’s notes (which I may type here later).

For matrix Lie groups, G ⊂ Matn(F), n ∈ N, F = R or C, we find that ∀h ∈ G, X ∈ L(G) we get a map

L∗h : Te(G)→ Th(G).

Recall that in general the elements in the Lie algebra are not in the Lie group itself (e.g. the elements
of U(n) are unitary but the elements of L(U(n)) are anti-hermitian). However, since L∗h is a map on the
tangent space, it turns out that L∗h then induces a map on the elements of the Lie algebra:

L∗h(X) = hX ∈ Th(G).

The proof is as follows: consider a curve

C : t ∈ R 7→ g(t) ∈ G

with g(0) = e, ġ(0) = X ∈ L(G). Near t = 0 we can Taylor expand,

g(t) ' In + tX + O(t2).

Define a new curve
C′ : t ∈ R 7→ h(t) = h · g(t) ∈ G

with h ∈ G. Near t = 0, h(t) then has the expansion

h(t) ' h + thX + O(t2)

Therefore
hX ∈ Th(G),

so we can quite sensibly define a map from the Lie algebra (defined locally at the origin) to the tangent
space of anywhere else we like on the manifold.

Equivalently, given any smooth curve

C : t ∈ R 7→ g(t) ∈ G,

13Or one that is “double zero.”
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with
ġ(t) ∈ Tg(t)(G) =⇒ g−1(t)ġ(t) = L∗g−1(t)(ġ(t)) ∈ L(G)∀t ∈ R.

In words, we can simply take any smooth curve on G and move it back to the origin, and then its first
derivative is in the tangent space at the origin, i.e. the Lie algebra L(G).

Conversely, given X ∈ L(G) we can reconstruct a curve CX : R→ G, t 7→ g(t) with

g−1(t)
dg(t)

dt
= X∀t ∈ R.

Our goal is then to solve this ordinary differential equation with boundary condition g(0) = In. We’ll define
the matrix exponential (likely familiar from quantum mechanics). For a matrix M ∈ Matn(F), we use the
Taylor series of the exponential to write

exp(M) ≡
∞

∑
l=0

1
l!

Ml ∈ Matn(F).

If we now set

g(t) = exp(tX) =
∞

∑
l=0

1
l!

tlXl ,

then it’s immediate that g(0) = exp(0) = In and

dg(t)
dt

=
∞

∑
l=1

1
(l − 1)!

tl−1Xl

= exp(tX)X
= g(t)X. �

Therefore g(t) solves the differential equation and we say that the exponential map takes the Lie algebra to
the Lie group.

Lecture 8.

Representation Matters: Saturday, October 20, 2018

Previously, we defined the exponential map

g(t) = exp(tX) =
∞

∑
l=0

1
l!

tlXl .

In the exercises (Example Sheet 1, Q10) we’ll check explicitly that for X ∈ L(SU(n)), we have exp(tX) ∈
SU(N)∀t ∈ R. We’ll also show in a separate question (Example Sheet 2, Q1) that for a choice of X ∈ L(G)
with G a Lie group and J an interval with J ⊂ R, SX = {g(t) = exp(tX}∀t ∈ J ⊂ R forms an abelian
subgroup of G. We call this a one-parameter subgroup.

Now we might be interested to reconstruct G from L(G). Setting t = 1 we get a map

exp : L(G)→ G,

and this map is one-to-one in some neighborhood of the identity e. (We haven’t proved this but it’s true.)
Then given X, Y ∈ L(G) we would also like to reconstruct the group multiplication from the Lie algebra,
and the solution to this will be the Baker-Campbell-Hausdorff (BCH) formula.

For X, Y ∈ L(G) define
gX = exp(X), gY = exp(Y)

and
gε

X(x) = exp(εX), gε
Y(Y) = exp(εY).

Then their product is
gX gY = exp(Z) ∈ G, z ∈ L(G).

Expanding out, we find that (
∞

∑
l=0

Xl

l!

)(
∞

∑
l′=0

Yl′

l′!

)
=

∞

∑
m=0

Zm

m!
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and one may work out the terms order by order– it looks something like this.

Z = X + Y +
1
2
[X, Y] +

1
12

([X, [X, Y]]− [Y, [X, Y]) + . . . ∈ L(G),

and we know that this is in the Lie algebra since it is made up of X, Y, and brackets of X and Y which are
guaranteed to be in the Lie algebra. Moreover this generalizes to Lie algebras that aren’t matrix groups,
since the construction only uses the vector space structure of L(G) and the Lie bracket.

L(G) therefore determines G in a neighborhood of the identity (up to the radius of convergence of exp Z,
anyway). The exponential map may not be globally one-to-one, however. For instance, it is not surjective
when G is not connected.

Example 8.1. For G = O(n),

L(O(n)) = {X ∈ Matn(R) : X + XT = 0}.
Then X ∈ L(O(n)) =⇒ TrX = 0. Now let g = exp(X), X ∈ L(O(n). We have a nice identity14 that

det(exp X) = exp(TrX),

and since TrX = 0, det(exp X) = 1. Therefore exp(X) ∈ SO(n) ⊂ O(n).
We’ll mention another non-proven fact– for G compact, the image of the exp map is the connected

component of the identity. This squares with what we just showed for O(n).

Our map can also fail to be injective when G has a U(1) subgroup.

Example 8.2. For G = U(1), we have

L(U(1)) = {X = ix ∈ C : x ∈ R}.
Thus g = exp(X) = exp(ix), but the Lie algebra elements have a degeneracy where ix and ix + 2πi yield
the same group element (by Euler’s formula) under the exp map.

Let’s now return to our discussion of SU(2) vs. SO(3). We saw that L(SU(2)) ' L(SO(3)), and so we
can construct a double-covering, i.e. a globally 2:1 map d : SU(2)→ SO(3) with d : A ∈ SU(2) 7→ d(A) ∈
SO(3). One can write the map explicitly as

d(A)ij =
1
2

tr2(σi Aσj A†).

However, d is not one-to-one since d(A) = d(−A). But we’ll explore the properties of this map more on
Example Sheet 2. Recall that SU(2) ' S3 the three-sphere. If we therefore quotient out by this map, this is
the same as identifying antipodal points on the three-sphere. That is, this map provides an isomorphism

SO(3) ' SU(2)/Z2

where Z2 = {I2,−I2} is the centre of SU(2), which is a discrete (normal) subgroup of SU(2).15

Put another way, SO(3) is the upper hemisphere U+ of the three-sphere S3 with antipodal identification
on the equation S2. But the upper hemisphere U+ is homeomorphic to the three-ball B3, with ∂B3 = S2. So
the quotient is the same thing as chopping S3 in half, flattening out the upper hemisphere U+ → B3 and
identifying antipodal points on the equator ∂B3 = S2.

Definition 8.3. For a Lie group G, a representation D is a map

D : G → Matn(F) with det M 6= 0.

Equivalently we could call this a map to GL(n, F). That is, a representation takes us from a Lie group to a
set of invertible matrices such that the group multiplication is preserved by the map,

∀g1, g2 ∈ G, D(g1)D(g2) = D(g1g2).

14To prove this, consider a basis where X is diagonal, Xij = δijλi , with λi the eigenvalues of X. Then powers of X are given by
Xn

ij = δijλ
n
i and the matrix exponential is simply the matrix with the exponential of each diagonal entry, (exp X)ij = δij exp(λi). It

follows that the determinant of the exponential is Πi exp(λi) = exp(∑i λi), which is just the exponential of the sum of the eigenvalues.
15A subgroup H ⊂ G is normal if gHg−1 = H∀g ∈ G. Then we define the quotient G/H to be the original group under

identification of the equivalence classes corresponding to the elements of the normal subgroup. Normal subgroups “tile” the group–
they separate it into distinct cosets, so it makes good sense to quotient (“mod out”) by a normal subgroup.
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For a Lie group specifically, we also require that the manifold structure is preserved, so that D is a smooth
map (continuous and differentiable). When the map is injective, we say that the representation is faithful,
but in general representations may be of lower dimension (e.g. the trivial representation where we send
every group element to the identity matrix).

Definition 8.4. For a Lie algebra g, a representation d is a map

d : g→ Matn(F).

Note that the zero matrix is part of the Lie algebra since a Lie algebra has a vector space structure, so it
won’t make sense to require that det M 6= 0. All we require is that this map d has the properties that

◦ it preserves the bracket operation, [d(X1), d(X2)] = d([X1, X2]) where [d(X1), d(X2)] is now the
matrix commutator.
◦ the map is linear, so it preserves the vector space structure: d(αX1 + βX2) = αd(X1)+ βd(X2)∀X1, X2 ∈

g, α, β ∈ F.

The dimension of a representation is then the dimension n of the corresponding matrices we’re using in
the image of our map d or D. The matrices in the image naturally act on vectors living in a vector space
V = Fn (i.e. column vectors with n entries in the field F). We call this the representation space.

Next time, we’ll show that representations of the Lie group have a natural correspondence to representa-
tions of the Lie algebra.

Lecture 9.

Representations All the Way Down: Tuesday, October 23, 2018

Last time, we started discussing representations of Lie groups. That is, a representation D is a map
from a Lie group G to matrices GL(n, F) over a field such that D is smooth and the group multiplication is
preserved,

∀g1, g2 ∈ G, D(g1)D(g2) = D(g1g2)

(where the multiplication on the LHS is taken to be ordinary matrix multiplication). The field F is usually
R or C and n ∈ N is called the dimension of the representation. In general dim D = n 6= dim G. A subtle
point: the dimension of the representation is the dimension of the target space GL(n, F). We’ll see some
examples of this shortly.

Note that this implies that

D(e)D(g) = D(g)∀g ∈ G =⇒ D(e) = In

and similarly
D(g)D(g−1) = D(gg−1) = D(e) = In =⇒ D(g−1) = (D(g))−1.

Now consider a matrix Lie group,
G ⊂ Matm(F̃)

(F̃ could be a different field). For each X ∈ L(G) the Lie algebra of G, construct a curve in G,

C : t ∈ R 7→ g(t) ∈ G

such that g(0) = Im, ġ(0) = X. If we have a representation D of G, then D(g(t)) is a curve in Matn(F). Let
us now define

d(X) ≡ d
dt

D(g(t))|t=0 ∈ Matn(F).

We claim that d(X) is then a representation of the Lie algebra L(G) corresponding to the representation D
of the Lie group G.

Near t = 0, we can certainly expand D(g(t)) as

D(g(t)) = In + td(X) + O(t2).

Let us take X1, X2 ∈ L(G) and play our usual game: we construct curves C1, C2 such that

C1 : t 7→ g1(t), C2 : t 7→ g2(t)

with
g1(0) = g2(0) = Im, ġ1(0) = X1, ġ2(0) = X2.
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We will show that multiplication of these curves in the right way produces an element corresponding to the
Lie bracket.

Consider the curve
h(t) = g−1

1 (t)g−1
2 (t)g1(t)g2(t) ∈ G.

Previously, we expanded g1 and g2 and showed that h(t) can be written as

h(t) = Im + t2[X1, X2] + O(t3).

Suppose we now pass this curve to the representation of G and calculate D(h(t)). Since a representation
preserves group multiplication, we get

D(h(t)) = D(g1)
−1D(g2)

−1D(g1)D(g2).

But we can also use our map on the Taylor expansion of h.

D(h) = D(Im + t2[X1, X2] + O(t3))

= D(Im) + t2
(

d
dt2 D(h(t))|t=0

)
+ O(t3)

= In + t2d([X1, X2]) + O(t3)

where we have used the fact that [X1, X2] is the coefficient for t2 in h(t) (if you like, you can think of h as a
function of t2, or reparametrize h as we did when initially constructing the Lie algebra from the tangent
space of G) so that d

dt2 D(h(t2))|t2=0 = d([X1, X2]).
Expanding the individual terms in the group multiplication we get

D(g1) = D(Im + tX1 + . . .) = In + td(X1) + O(t2)

and
D(g1)

−1 = [Im + td(X1) + O(t2)]−1 = In − td(X1) + O(t2).

If we multiply it all out, we get that

D(g1)
−1D(g2)

−1D(g1)D(g2) = Im + t2[d(X1), d(x2)].

So indeed the bracket is preserved under the representation map:

d([X1, X2]) = [d(X1), d(X2)]. �

Exercise 9.1. Given a representation d of L(G), show that in some neighborhood of the identity e, g =
exp(X), X ∈ L(G), show that

D(g) = D[exp X] = exp(d(X)).

Show that g1 = exp(X1), g2 exp(X2), X1, X2 ∈ L(G), the group multiplication is preserved by D, D(g1g2) =
D(g1)D(g2).

We’ll now consider representations of Lie algebras in more depth. One of the nice features of the Cartan
classification of Lie groups is that it will also classify their representations.

Let g be a Lie algebra of dimension D. Here are some representations of g.

Definition 9.2. The trivial representation d0 maps all elements of g to the number 0:

d0(X)∀X ∈ g =⇒ dim(d0) = 1.

Trivial representations correspond to invariants– all elements of the algebra are mapped to zero and by the
exponential map, all group elements are the identity.

Definition 9.3. If g = L(G) for some matrix Lie group, G ⊂ Matn(F), we have the fundamental representation
d f with

d f (X) = X∀X ∈ g =⇒ dim(d f ) = n.

That is, we just take the element of the Lie algebra and represent it by itself.



9. Representations All the Way Down: Tuesday, October 23, 2018 23

Definition 9.4. All Lie algebras have an adjoint representation, dAdj, with

dim(dAdj) = dim(g) = D

(where D is the dimension of the Lie algebra).
For all X ∈ g, we define a linear map

adX : g→ g

by
Y ∈ g 7→ adX(Y) = [X, Y] ∈ g.

We call this the “ad map” for short. Since adX is a linear map between vector spaces of dimension D, it is
equivalent to a D× D matrix. Choosing a basis

B = {Ta, a = 1, . . . , D}

for g and setting X = XaTa, Y = YaTa, we get

[X, Y] = XaYb[Ta, Tb] = XaYb f ab
c Tc.

In this basis, we therefore have the explicit form of the adjoint map:

[adX(Y)]c = (RX)
b
cYb

with
(RX)

b
c ≡ Xa f ab

c ,

where RX is a D× D matrix.
We can then define the adjoint representation by

dadj(X) = adX∀X ∈ g,

or with respect to a basis,

[dadj(X)]bc = (RX)
b
c ∀X ∈ g, b, c = 1, . . . , D.

That is, the adjoint representation of an element X is simply the ad map considered as a D× D matrix.

We can then check that the adjoint representation satisfies the defining properties of a representation.
i)

∀X, Y ∈ g, [dAdj(X), dAdj(Y)] = dadj([X, Y]).

Proof: dAdj(X) = adX , dAdj(Y) = adY. Then ∀Z ∈ g, composing the ad maps gives us

(dAdj(X) ◦ dAdj(Y))(Z) = [X, [Y, Z]]

and in the other order,
(dAdj(Y) ◦ dAdj(X))(Z) = [Y, [X, Z]].

Evaluating the RHS of our expression, we have

dAdj([X, Y])(Z) = ad[X,Y]Z = [[X, Y], Z].

Subtracting the LHS from the RHS, we can rewrite as

(LHS− RHS)(Z) = [X, [Y, Z]]− [Y, [X, Z]]− [[X, Y], Z]

= [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]]

= 0

using the antisymmetry property of the bracket and the Jacobi identity.
ii) ∀X, Y ∈ g, α, β ∈ F we have

dAdj(αX + βY) = αdAdj(X) + βdAdj(Y),

which holds due to the linearity of adX , adY.
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Lecture 10.

Representation Theory of SU(2): Thursday, October 25, 2018

Today, we’ll consider the consequences of some specific representations and their structures.

Definition 10.1. Two representations R1 and R2 are isomorphic if ∃ a matrix S such that

R2(X) = SR1(X)S−1 ∀X ∈ g.

Note this must be the same matrix S: that is, R2 and R1 are related by a change of basis. If so, we denote
this as

R1
∼= R2.

Definition 10.2. A representation R with representation space V has an invariant subspace U ⊂ V if

R(X)u ∈ U ∀X ∈ g, u ∈ U.

(This is equivalent to our ideals in Lie algebras and normal subgroups in group theory.)
Any representation has two trivial invariant subspaces: they are the vector U = {0} and U = V the

whole representation space.

Definition 10.3. An irreducible representation (irrep) of a Lie algebra has no non-trivial invariant subspaces.

With these definitions in hand, let’s look at the representation theory of L(SU(2)). It’s useful to us to
write down a basis for the Lie algebra L(SU(2)):

{Ta = −1
2

iσa, a = 1, 2, 3}

with σa the Pauli matrices. We calculated the structure constants:

[Ta, Tb] = f ab
c Tc

with f ab
c = εabc (the alternating tensor/symbol) and a, b, c = 1, 2, 3. Let’s do something kind of strange–

we’ll write a new complex basis,

H ≡ σ3 =

(
1 0
0 −1

)
E+ ≡

1
2
(σ1 + iσ2) =

(
0 1
0 0

)
E− ≡

1
2
(σ1 − iσ2) =

(
0 0
1 0

)
.

This is really a basis for a somewhat bigger space, the complexified Lie algebra

LC(SU(2)) = SpanC{T
a, a = 1, 2, 3}.

For now, we’ll simply note that for X ∈ L(SU(2)), we can certainly rewrite X as

X = XH H + X+E+ + X−E−,

where XH ∈ iR and X+ = −(X̄−) (where bar indicates complex conjugation, as usual). This is called the
Cartan-Weyl basis for L(SU(2)).16 In this basis, a general element takes the form

X =

(
XH X+

X− −XH

)
.

This is certainly traceless, and X ∈ L(SU(2)) ⇐⇒ X is antihermitian, i.e. XH ∈ iR, X+ = −(X̄−).
This basis has some nice properties. For instance, we see that

[H, E±] = ±2E±
and [E+, E−] = H.

16We’ve been writing L(G) to distinguish the Lie algebra from the corresponding Lie group G, but other texts may use the
convention of writing su(2) using lowercase letters or the Fraktur script su(2) for the Lie algebra. Just a convention to be aware of.
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Hence the ad map takes a very simple form: adH(E±) = ±2E±, adH(H) = 0. We also have adH(X) =
[H, X]∀X ∈ LC(SU(2)). This describes a general X, but note that in this basis, our basis vectors {E+, E−, H}
are eigenvectors of

adH : L(SU(2))→ L(SU(2)).

That is, we have chosen a basis that diagonalizes the ad map, and its eigenvalues {+2,−2, 0} are called
roots.

Definition 10.4. Consider a representation R of L(SU(2)) with a representation space V. We assume that
R(H) is also diagonalizable. Then the representation space V is spanned by eigenvectors of R(H), with

R(H)vλ = λvλ : λ ∈ C.

The eigenvalues λ are called weights of the representation R.

Definition 10.5. For such a representation, we call E± the step operators (cf. the ladder operators from
quantum mechanics).

The step operators are so named because their representations take eigenvectors of R(H) with eigenvalue
λ to new eigenvectors of R(H) with new eigenvalues λ± 2. That is, if R(H)vλ = λvλ, then

R(H)R(E±)vλ = (R(E±)R(H) + [R(H), R(E±)])vλ

= (λ± 2)R(E±)vλ.

Note that a finite dimensional representation R of L(SU(2)) must have a highest weight Λ ∈ C, or else
we could just keep acting with the raising operator E+ to get more linearly independent vectors. (We can
play a similar trick assuming only a lowest weight– this is what led us to the ladder of harmonic oscillator
states.) If there is a highest weight, then we have

R(H)vΛ = ΛvΛ

R(E+)vΛ = 0.

If R is irreducible, then all the remaining basis vectors of V can be generated by acting on the highest-weight
eigenvector vΛ with R(E−) (that is, there is only one ladder of states to construct). By doing this n times,
we get some new lowered states

VΛ−2n = (R(E−))nvΛ, n ∈ N.

What happens if we now try to raise the lowered states back up? The result is as nice as we could have
hoped– we will get back our old states, up to some normalization.

R(E+)vΛ−2n = R(E+)R(E−)vΛ−2n+2

= (R(E−)R(E+) + [R(E+), R(E−)])vΛ−2n+2

= (R(E−)R(E+) + R(H))vΛ−2n+2

= R(E−)R(E+)vΛ−2n+2 + (Λ− 2n + 2)vΛ−2n+2.

where we have used the fact that the representation preserves the bracket structure.
Looking at the lowest-n cases, we can now take n = 1 to find

R(E+)vΛ−2 = ΛvΛ

and then for n = 2,

R(E+)vΛ−4 = R(E−)R(E+)vΛ−2 + (Λ− 2)vΛ−2

= ΛR(E−)vΛ + (Λ− 2)vΛ−2

= (2Λ− 2)VΛ−2.

Proceeding by induction, we find that we can always use the relations for lower n to eliminate the R(E+)s
at any n we like and write the final result in terms of the next state up. That is,

R(E+)vΛ−2n = rnvΛ−2n+2.
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Plugging this into our general equation for R(E+)vΛ−2n, we get a recurrence relation17:

rn = rn−1 + Λ− 2n + 2

with the single boundary condtion that R(E+)vΛ = 0. This implies that r0 = 0, so we use this to find that
our recurrence relation takes the form

rn = (Λ + 1− n)n.
In addition, a finite-dimensional representation must also have a lowest weight Λ− 2N (recall N is the

dimension of the representation). That is, we have some lowest weight vector vΛ−2N 6= 0 such that

R(E−)vΛ−2N = 0 =⇒ vΛ−2N−2 = 0 =⇒ rN+1 = 0.

But using the recurrence relation, rN+1 vanishing means that

(Λ− N)(N + 1) = 0 =⇒ Λ = N ∈ Z≥0.

This completes the characterization of the representation theory of L(SU(2)). We conclude that a finite
dimensional irrep RΛ of L(SU(2)) can be described totally by a highest weight Λ ∈ Z≥0 and it comes with
a remaining set of weights

SRΛ = {−Λ,−Λ + 2, . . . Λ− 2, Λ} ⊂ Z,
where

dim(RΛ) = Λ + 1.

Example 10.6. Let’s take some explicit cases. R0 has dimension 1 (d0, the trivial representation), R1 has
dimension 2 (d f , the fundamental representation), and R2 has dimension 3 (dAdj, the adjoint representation).

This is precisely equivalent to the theory of angular momentum in quantum mechanics but with a
different normalization– in QM, our spin states had single integer steps but with jmax = n/2, n ∈ N. This
happens because the angular momentum operators obey the same bracket structure (i.e. fail to commute)
in exactly the same way as the basis elements of the Lie algebra L(SU(2)).

Lecture 11.

Direct Sums and Tensor Products: Saturday, October 27, 2018

Some remarks from last time. In terms of the original basis vectors, our basis for SU(2) was

H = 2iT3, E± = i(T1 ± iT2),

with Ta ≡ − 1
2 iσa, a = 1, 2, 3. Conversely, we can invert these relationships to find T3 = H/2i, T1 =

1
2i (E+ + E−), T2 = − 1

2 (E+ − E−).
It follows that a representation R of the complexified Lie algebra LC(SU(2)) (i.e. a set of linear maps

R(H), R(E+), R(E−)) induces a representation of the original Lie algebra L(SU(2)), which we get by
applying our representation to the original basis elements, e.g.

R(T1) =
1
2i

R(E+ + E−) =
1
2i
(R(E+) + R(E−)).

Today we’ll consider the SU(2) representation from L(SU(2)) representations. That is, we’ll look at the
connection between the representation of a Lie algebra L(G) and the representation of the original Lie
group G.

The punchline from last time was that finite-dimensional irreps of L(SU(2)) can be labeled by the highest
weight Λ ∈ Z≥0, with a weight set

SΛ = {−Λ, Λ + 2, . . . , Λ− 2,+Λ} ⊂ Z.

We had dim(RΛ) = Λ + 1.
To a physicist, this is simply a complicated way of expressing angular momentum in quantum mechanics.

Recall that the total angular momentum is orbital + spin angular momentum. We had our J operator,

J = (J1, J2, J3)

17Clearly, the left side of our original recurrence relation just becomes rnvΛ−2n+2. On the right side, we’ve left out a few steps.
R(E−)R(E+)vΛ−2n+2 = R(E−)R(E+)vΛ−2(n−1) = R(E−)rn−1vΛ−2n+4 = rn−1vΛ−2n+2. Pull out the vΛ−2n+2s everywhere and you’re
left with the recurrence relation.
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with eigenstates (e.g. of J3) labeled by j ∈ Z/2, j ≥ 0. We then had

m ∈ {−j, j + 1, . . . ,+j}
such that

Ĵ3 |j, m〉 = m |j, m〉
and the total angular momentum J2 with

Ĵ2 |j, m〉 = j(j + 1) |j, m〉 .

We can set up the correspondence

J3 =
1
2

R(H)

and
J± = J1 ± i J2 = R(E±)

so that the highest weight Λ of the representation corresponds to

Λ = 2j ∈ Z
and a general weight λ ∈ S(R) corresponds to the angular momentum along a particular axis,

λ = 2m ∈ Z.

The eigenvector vΛ thus corresponds to vΛ ∼ |j, j〉 and similarly vλ ∼ |j, m〉 . This explains in an algebraic
context why m ranges from −j to j in integer steps, with j a positive half-integer. Fixing Λ is equivalent
to choosing the total angular momentum, and fixing λ is then choosing the angular momentum along a
particular axis (e.g. J3).

Recall that locally we can parametrize group elements A ∈ SU(2) using the exponential map,

A = exp(X), X ∈ L(SU(2)).

Starting from the irreducible representations RΛ of L(SU(2)) defined above, we can then define the
representation

DΛ(A) ≡ exp(RΛ(X)), Λ ∈ Z≥0.
Recall that SU(2) and SO(3) have the same Lie algebra. In general this will yield a valid representation of
SU(2) but not of SO(3) ' SU(2)/Z2. For this to be a representation of SO(3), we must further require that
it is well-defined on the quotient by the center of the group {I2,−I2}, i.e.

DΛ(−I2) = DΛ(I2) ⇐⇒ DΛ(−A) = DΛ(A)∀A ∈ SU(2).

Let’s check explicitly if that holds. First note that we can write

−I2 = exp(iπH)

(from the explicit form of H– check this). Now we’ll pass to the representation DΛ:

DΛ(−I2) = DΛ(exp(iπH)) = exp(iπRΛ(H)).

But RΛ(H) has eigenvalues λ ∈ {−Λ, Λ + 2, . . . ,+Λ}, so the matrix on the left DΛ(−I2) must have the
same eigenvalues (after exponentiation)

exp(iπλ) = exp(iπΛ) = (−1)Λ

since λ goes in steps of 2. Therefore we find that

DΛ(−I2) = DΛ(I2) = (I)(Λ+1)×(Λ+1) ⇐⇒ Λ ∈ 2Z.

That is, Λ must be even. In this case, Λ ∈ 2Z =⇒ DΛ is a representation of SU(2) and SO(3), whereas
Λ ∈ 2Z+ 1 =⇒ DΛ is a representation of SU(2) but not of SO(3). Sometimes we call this a “spinor
representation” (i.e. half-integer spin) of SO(3), but these aren’t really representations of SO(3)– really,
they’re representations of the double cover SU(2).

This reveals something a bit interesting– the true rotation group of the physical world we live in is not
SO(3) but SU(2). The particles which see these complex rotations are exactly the particles with half-integer
spin.
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New representations from old

Definition 11.1. If R is a representation of a real Lie algebra g, we define a conjugate representation by

R̄(X) = R(X)∗∀X ∈ g.

It’s an exercise to check that this really is a representation– see example sheet 2. Note that sometimes
R̄ ' R, so the new representation is isomorphic to the old one.

Definition 11.2. Given representations R1, R2 of a Lie algebra with corresponding representation spaces
V1, V2 and dimensions d1, d2, we may define the direct sum of the representations, denoted

R1 ⊕ R2.

The direct sum acts on the direct sum of the vector spaces,

V1 ⊕V2 = {v1 ⊕ v2 : v1 ∈ V1, v2 ∈ V2}.

The dimension of the new representation space is simply dim(V1 ⊕V2) = d1 + d2. The direct sum is then
defined very simply by

(R1 ⊕ R2)(X) · (v1 ⊕ v2) = (R1(X)v1)⊕ (R2(X)v2) ∈ V1, V2.

There’s probably a nice commuting diagram for this in category theory. To make this more concrete, one
can write (R1 ⊕ R2)(X) as a block diagonal matrix with R1(X) in the upper left, R2(X) in the lower right.

R(X) =

(
R1(X)

R2(X)

)
This is known as a reducible representation, i.e. a representation which can be written as the direct sum of
two (or more) representations.

Definition 11.3. Given vector spaces V1, V2 with dimensions d1, d2, we define the tensor product space V1⊗V2.
It’s got a different structure than the more familiar Cartesian product– our tensor product space is spanned
by basis elements

v1 ⊗ v2, v1 ∈ V1, v2 ∈ V2.

In particular, the tensor product space has dimension dim(V1 ⊗ V2) = d1 × d2. This is already different
from the Cartesian (direct) product, which has dimension dim(V1 ×V2) = d1 + d2.

Moreover, the addition structure on the tensor product space is special. In a Cartesian product, it makes
sense to add terms like (0, 1) + (1, 0) = (1, 1) (i.e. term-wise addition). But a tensor product is a formal
product. In a tensor product, |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 cannot be simplified any further. It only makes sense
to add terms which have one of the elements from the original spaces in common, e.g. something like
(0, 1) + (1, 1) = (1, 1).

Tensor products are of particular interest in physics because when we consider the Hilbert space of a
multi-particle state, it can be represented not as a direct product but a tensor product of the individual
single-particle states.18

Given two linear maps M1 : V1 → V1, M2 : V2 → V2, we can define the tensor product map (M1 ⊗M2) :
V1 ⊗V2 → V1 ⊗V2 such that

(M1 ⊗M2)(v1 ⊗ v2) = (M1v1)⊗ (M2v2) ∈ V1 ⊗V2,

which may be extended naturally to all elements of V1 ⊗V2 by linearity (since we have defined it on all
basis vectors).

18For a simple example, consider two particle spin states taking discrete values. |a〉 , |b〉 ∈ {|0〉 , |1〉}. Then the two-particle states
are described by the tensor product space |a〉 ⊗ |b〉 (sometimes |a〉 |b〉 or simply |ab〉), which is spanned by |00〉 , |01〉 , |10〉 , |11〉. It’s
obvious in this notation that it doesn’t make sense to add states like |10〉+ |01〉– addition is only well-defined when at least one of the
original basis states matches, e.g. |10〉+ |11〉 = |1〉 (|0〉+ |1〉). It’s also clear that the tensor product space is “bigger” than the direct
product space. To make contact with quantum mechanics, it’s the tensor product structure which lets us prepare entangled states like
|00〉+ |11〉 which have no natural projection onto the original one-particle states.
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Definition 11.4. Suppose we have two representations R1, R2 of a Lie algebra g acting on representation
spaces V1, V2. By definition, for X ∈ g we have

R1(X) : V1 → V1, R2(X) : V2 → V2.

Then we can define a new representation of g, the tensor product representation (R1 ⊗ R2), such that for each
X ∈ g, we get

(R1 ⊗ R2)(X) : V1 ⊗V2 → V1 ⊗V2,
given explicitly by

(R1 ⊗ R2)(X) ≡ R1(X)⊗ IV2 + IV1 ⊗ R2(X).
Here, I’ve denoted IV1 as the identity on V1 and the same is true for IV2 . We’ll talk more about what this
looks like and why it’s defined this way next time.

Lecture 12.

Reducibility and Remainders: Tuesday, October 30, 2018

Last time, we defined the tensor product of two representations. Suppose we have a Lie algebra g
and two representations R1, R2 with representation spaces V1, V2 respectively and dimensions dim(R1) =
d1, dim(R2) = d2. Then the tensor product of these two representations acts on the representation space
V1 ⊗V2 and is defined such that ∀X ∈ g,

(R1 ⊗ R2)(X) = R1(X)⊗ I2 + I1 ⊗ R2(X).

Here, I1, I2 are the identity maps on V1 and V2. Note also that

(R1 ⊗ R2)(X) 6= R1(X)⊗ R2(X),

since this would be quadratic rather than linear in X and would therefore fail to be a representation.
To make this more concrete, let us choose bases

B1 = {vj
1; j = 1, . . . , d1}

B2 = {vα
2 ; α = 1, . . . , d2}.

Thus a basis for V1 ⊗V2 is

B1⊗2 = {vj
1 ⊗ vα

2 ; j = 1, . . . , d1, α = 1, . . . , d2}.
The dimension of the new representation is therefore dim(R1⊗ R2) = d1d2 (i.e. it is spanned by d1d2 tensor
products of the d1 basis vectors of V1 and the d2 basis vectors of V2).

The tensor product representation R1 ⊗ R2 is then given in a basis by

(R1 ⊗ R2)(X)aα,jβ = R1(X)ij Iαβ︸︷︷︸
d2×d2

+ Iij︸︷︷︸
d1×d1

R2(X)αβ

where the identity matrices have the dimensions indicated.

Definition 12.1. We say that a representation R with representation space V has an invariant subspace
U ⊂ V if

R(X)u ∈ U∀X ∈ g, u ∈ U.
Every representation space has two trivially invariant subspaces, U = {0} and U = {V}. We then say
that if V has no non-trivial invariant subspaces, we call the corresponding representation an irreducible
representation or irrep of g.

If R has an invariant subspace U, we may find a basis such that for all X ∈ g, the representation matrices
take the block matrix form

R(X) =

(
A(X) B(X)

0 C(X)

)
where the elements of U now take the form (

U
0

)
.
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Definition 12.2. Moreover, a fully reducible representation can be written as a direct sum of irreps, i.e. in
some basis, R takes a block diagonal form

R(X) =


R1(X)

R2(X)
. . .

Rn(X)


It’s an important fact that if Ri, i = 1, . . . , m are finite-dimensional irreps of a simple Lie algebra, then

the tensor product
R1 ⊗ R2 ⊗ . . .⊗ Rm

is fully reducible as some direct sum

R1 ⊗ R2 ⊗ . . .⊗ Rm ∼= R̃1 ⊕ R̃2 ⊕ . . .⊕ R̃m̃.

Practically speaking, let’s consider tensor products of L(SU(2)) representations. Let RΛ, RΛ′ be two
irreps of L(SU(2)) with highest weights Λ, Λ′ and representation spaces VΛ, VΛ′ , where Λ, Λ′ ∈ Z≥0. We
defined these last time– these are just the spin states of particles with total spin Λ/2, Λ′/2. They have
dimension

dim(RΛ) = Λ + 1, dim(RΛ′) = Λ′ + 1.
We can then form the tensor product representation RΛ ⊗ RΛ′ with representation space VΛ ⊗VΛ′ spanned
by the tensor products of basis vectors:

VΛ ⊗VΛ′ = spanR{v⊗ v′; v ∈ VΛ, v′ ∈ VΛ′}.
Now ∀X ∈ L(SU(2)) we have

(RΛ ⊗ RΛ′)(X) · (v⊗ v′) = (RΛ(X)v)⊗ v′ + v⊗ (RΛ′(X)v′).

Since L(SU(2)) is simple, taking this tensor product gives us a fully reducible representation of L(SU(2))
of dimension

dim(RΛ ⊗ RΛ′) = (Λ + 1)(Λ′ + 1)
Then we can rewrite the tensor product as a direct product:

RΛ ⊗ RΛ′ =
⊕

Λ′′∈Z≥0

LΛ′′
Λ,Λ′RΛ′′

for some non-negative integers LΛ′′
Λ,Λ′ , which we call “Littlewood-Richardson coefficients.” That is, the

various irreps of L(SU(2)) will appear in the direct sum decomposition with some multiplicity given by
these coefficients.

Now recall that the representation space VΛ has a basis {vλ} where λ specifies the weights

λ ∈ SΛ = {−Λ,−Λ + 2, . . . ,+Λ}
of the eigenvectors vλ of RΛ(H) such that

RΛ(H)vλ = λvλ.

Similarly VΛ′ is equipped with a basis {v′λ′} where

λ′ ∈ SΛ′ = {−Λ′,−Λ′ + 2, . . . ,+Λ′}
and

RΛ′(H)v′λ′ = λ′v′λ′ .
Therefore a basis for the representation space VΛ ⊗VΛ′ is given by

BΛ⊗Λ′ = {vλ ⊗ v′λ′ ; λ ∈ Sλ, λ′ ∈ SΛ′}.
Acting on a particular basis vector, we find that

(RΛ ⊗ RΛ′)(H)(vλ ⊗ v′λ′ = (RΛ(H)vλ)⊗ v′λ′ + vλ ⊗ (RΛ′(H)v′λ′)

= (λ + λ′)(vλ ⊗ v′λ′).
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What we find is that the possible weights are therefore just sums of the individual λ, λ′. That is, the weight
set of RΛ ⊗ RΛ′ is simply

SΛ,Λ′ = {λ + λ′ : λ ∈ SΛ, λ′ ∈ SΛ′}.
Note that elements of this set can have degeneracy– the same number can appear more than once!19

However, it’s also true that if we look for the highest weight of the new tensor product representation, it is
exactly Λ + Λ′, appearing with multiplicity one:

LΛ+Λ′
Λ,Λ′ = 1.

Thus we may write
RΛ ⊗ RΛ′ = RΛ+Λ′ ⊕ R̃Λ,Λ′

where we have written the tensor product in terms of a new irrep RΛ+Λ′ and also a remainder R̃Λ,Λ′ . The
remainder has some new weight set S̃Λ,Λ′ such that

SΛ,Λ′ = SΛ+Λ′ ∪ S̃Λ,Λ′ .

Equivalently S̃Λ,Λ′ = SΛ,Λ′ \ SΛ+Λ′ .
Let’s see an example of this decomposition into a direct sum. Consider the case Λ = Λ′ = 1. Then we

have the weight set
S1 = {−1,+1},

so the weight set of the tensor product is

S1⊗1 = {(−1) + (−1), (−1) + 1, 1 + (−1), 1 + 1}
= {−2, 0, 0,+2}
= {−2, 0, 2} ∪ {0}.

It follows that
R1 ⊗ R1 = R2 ⊕ R0,

which is the sophisticated version of the fact from undergrad quantum mechanics that a system of two spin
1/2 particles can behave like a spin 1 particle or a spin 0 particle:

spin 1/2⊗ spin 1/2 = spin 1⊕ spin 0.

Lecture 13.

The Killing Form: Thursday, November 1, 2018

Last time, we finished discussing the representation theory of L(SU(2)). In particular, we defined
the tensor product representation and showed that we can usually express the tensor product of two
representations in terms of the direct product of many copies of RΛ:

RΛ ⊗ RΛ′ =
⊕

Λ′′∈Z≥0

LΛ′′
Λ,Λ′RΛ′′

with
LΛ′′

Λ,Λ′ ∈ Z≥0.
We also described an algorithm to work out the direct product representation, namely writing the tensor

product as a direct sum of the representation RΛ+Λ′ and some remainder term R̃λ,Λ′ . It’s an exercise (sheet
2, Q3) to work out that

RN ⊗ RM = R|N−M| ⊕ R|N−M|+2 ⊕ . . .⊕ RN+M.

Tensor products are important because multi-particle spaces are described in general by tensor products,
not direct products (this leads to the phenomenon of entanglement).

Let us now define something called the Killing form.

19Consider λ = 2, λ′ = 0 and λ = 0, λ′ = 2. Both of these will appear as terms in the set so the weight 2 can appear twice. We’ll
see this concretely in a minute.
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Definition 13.1. Given a vector space V over a field F (= R,C), an inner product i is a symmetric bilinear
map

i : V ×V → F.
In particular, we say that i is non-degenerate if for every v ∈ V (v 6= 0), there is a w ∈ V (w 6= v) such that

i(v, w) 6= 0.

That is, there is no vector that is orthogonal to all the others under the inner product, or equivalently it has
no zero eigenvalues considered as a linear map.20

Question: is there a “natural” inner product on a Lie algebra g? The answer is yes– it is called the Killing
form, an inner product κ with

κ : g× g→ F.
We’ll define the formula first and then explore why it makes sense.

Definition 13.2. The Killing form κ is defined such that ∀X, Y ∈ g,

κ(X, Y) ≡ Tr(adX ◦ adY).

That is, κ is the trace of the linear map
adX ◦ adY : g→ g

which takes
Z ∈ g 7→ [X, [Y, Z]] ∈ g.

Why is this a sensible choice? Suppose we choose a basis {Ta}, a = 1, . . . D for a Lie algebra g with
dimension D. Then we can expand in this basis,

X = XaTa, Y = YaTa, Z = ZaTa.

We also have some structure constants associated to our choice of basis,

[Ta, Tb] = f ab
c Tc.

Thus the composition of the ad maps is some D× D matrix, and we can explicitly work out in this basis
the components of this matrix.

[X, [Y, Z]] = XaYbZc[Ta, [Tb, Tc]]

= XaYbZc[Ta, f bc
d Td]

= XaYbZc f ad
e f bc

d Te

= M(X, Y)c
eZcTe

with
M(X, Y)c

e ≡ XaYb f ad
e f bc

d .
The matrix M(X, Y) is therefore the linear map adX ◦ adY : g→ g, and all that remains is to take the trace
to get the Killing form.

κabXaYb = TrD[M(X, Y)]

= M(X, Y)c
c

= XaYb f ad
c f bc

d .

Therefore the Killing form in terms of structure constants is explicitly

κab = f ad
c f bc

d .

The indices c and d are summed over, so we get the two free indices a, b as desired.
Now what do we mean by saying that the Killing form is a “natural” inner product on a Lie algebra? It

is the property that κ is invariant under the adjoint action of g,

κ([Z, X], Y) + κ(X, [Z, Y]) = 0

20This definition is easily flipped. An inner product i is degenerate if there exists v ∈ V (v 6= 0) such that ∀w ∈ V, i(v, w) = 0
when w 6= v.
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for all Z ∈ g, X, Y ∈ g. This is the equivalent of invariance under a conjugation by a Lie algebra element,
gXg−1.

Let’s show that this property holds for this inner product.

Proof.

κ([Z, X], Y) = Tr[ad[Z,X] ◦ adY]

= Tr[(adZ ◦ adX − adX ◦ adZ) ◦ adY]

= Tr[adZ ◦ adX ◦ adY]− Tr[adX ◦ adZ ◦ adY]

where in going from the first to the second line, we have used the fact that the ad map is also a representation
and can therefore be rewritten by linearity in its argument [Z, X]. Similarly,

κ(X, [Z, Y]) = Tr[adX ◦ adZ ◦ adY]− Tr[adX ◦ adY ◦ adZ].

However, if we now compare these two expressions we see that by the cyclic property of the trace (i.e.
interpreting the ad maps as matrices on the vector space), their sum vanishes21, and so

κ([Z, X], Y) + κ(X, [Z, Y]) = 0. �

We may next ask under what conditions κ is non-degenerate, i.e. the map κab is invertible.

Theorem 13.3. (Cartan) The Killing form κ on a Lie algebra g is non-degenerate ⇐⇒ g is semi-simple.

In the specific case, if g is simple, then the Killing form κ is the unique invariant inner product on g up
to an overall scalar multiple.

Definition 13.4. A Lie algebra is semi-simple if it has no abelian ideals. (This is a weaker condition than
simple, clearly.)

Exercise 13.5. From Example Sheet 2, Question 9b: Show that a finite dimensional semi-simple Lie algebra
can be written as the direct sum of a finite number of simple Lie algebras,

g = g1 ⊕ g2 ⊕ . . .⊕ gl , gi simple.

Note that a direct product g⊕ f of Lie algebras g, f is defined such that ∀X ∈ g, Y ∈ f, [X, Y] = 0.

Let us prove the forward direction of Cartan’s theorem. First note that

κ non-degenerate =⇒ g is semi-simple

is equivalent to proving the contrapositive,

g not semi-simple =⇒ κ is degenerate.

Suppose g is not semi-simple. Then g has an abelian ideal j. Let dim(g) = D and suppose the ideal has
dimension dim(j) = d. WLOG we can choose a basis B for g such that

B = {Ta} = {Ti; i = 1, . . . , d︸ ︷︷ ︸
span j

} ∪ {Tα; α = d + 1, d + 2, . . . , D},

i.e. a subset Ti of the basis vectors span the ideal j. Since j is abelian,

[Ti, T j] = 0 ∀i, j = 1, . . . , d.

Therefore the structure constants are constrained by

f ij
a = 0, i, j = 1, . . . , d, a = 1, . . . , D.

That is, the bracket vanishes for all pairs of elements in the abelian ideal, so all structure constants with ij
indices up are zero.

Moreover, j is an ideal, so the bracket of a basis element for j with a general basis element is still in j.
That is,

[Tα, T j] = f αj
k Tk ∈ j =⇒ f αj

β = 0, β = d + 1, . . . , D.

We’ll use these facts next time to complete the proof of Cartan’s theorem in one direction.

21Explicitly, this means that Tr[adX ◦ adY ◦ adZ ] = Tr[adZ ◦ adX ◦ adY ].
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Lecture 14.

Cartan’s Theorem: Saturday, November 3, 2018

Today we’ll complete our initial discussion of Killing forms and begin the Cartan classification of
finite-dimensional simple complex Lie algebras.

Last time, we showed that if g is not semi-simple, then some of the structure constants must vanish.
Let’s see what how this implies that κ is degenerate (i.e. there exists some v ∈ V such that its Killing form
vanishes, i(v, w) = 0 for all w ∈ V).

Theorem 14.1 (Cartan’s theorem). For a Lie algebra g, if its Killing form κ is nondegenerate, then g is semi-simple.

Proof. We started by separating the basis vectors Ta into a set {Ti, i = 1, . . . , d} spanning the ideal j and the
rest of the basis vectors {Tα, α = d + 1, . . . , D}. Since j is abelian, we found that

[Ti, T j] = 0 ∀i, j = 1, . . . , d =⇒ f ij
a = 0, (14.2)

and since j is an ideal
[Tα, T j] = f αj

k Tk ∈ j =⇒ f αj
β = 0. (14.3)

Now consider a general element of the Lie algebra,

X = XaTa ∈ g

and a general element of the ideal,
Y = YiTi ∈ j.

Then
κ(X, Y) = κaiXaYi, with κai ≡ f ad

c f ic
d .

Let’s take this carefully.

κai = f ae
c f ic

e by definition

= f ae
α f iα

e by 14.2

= f aj
α f iα

j by 14.3.

To go from the first line to the second, we have used the fact that if c = 1, . . . , d, then f ic
e vanishes, so

f ic
e = f iα

e . To go from the second line to the third, we have then used the fact that if e = d + 1, . . . , D then
f ae
α vanishes, so f ae

α = f aj
α . Now separate the sum over a = 1, . . . , D into k = 1, . . . , d and β = d + 1, . . . , D.

Thus
κai = f βj

α︸︷︷︸
zero by f αj

β =0

f iα
j + f kj

α︸︷︷︸
zero by f kj

a =0

f iα
k = 0.

Therefore
κ[X, Y] = 0 ∀Y ∈ j, ∀X ∈ g =⇒ κ is degenerate.

Taking the contrapositive, we conclude that κ is nondegenerate =⇒ g is semi-simple. �

In Hugh Osborn’s notes, he proves the other direction, so this turns out to be an if and only if. That is, κ
is nondegenerate ⇐⇒ g is semi-simple.

Cartan classification Cartan proved in 1894 that one can fully classify all finite dimensional, simple,
complex Lie algebras. Happily, these are often the ones which are of most use to us in physics. Simple Lie
groups come with non-degenerate inner products (a fortiori, since simple implies semi-simple), which is a
nice property. Moreover we will often look at complex Lie algebras since the field C is algebraically closed–
polynomials with complex coefficients have in general complex solutions, whereas the same is not true for
polynomials with real coefficients (which can have complex solutions).

Recall that when we did the representation theory of L(SU(2))C, we defined a Cartan-Weyl basis,

{H, E±}
where H is diagonal and E± moves us between eigenvectors. The brackets turned out to be

[H, H] = 0, [H, E±] = ±2E±
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What this tells us is that the ad map adH (defined by adH(X) = [H, X], in case you forgot) is diagonal, and
it has eigenvalues 0,±2. We would now like to generalize this principle.

Definition 14.4. We say that X ∈ g is ad-diagonalizable (AD) if

adX : g→ g

is diagonalizable.

For a matrix, this meant that we could write the map as a diagonal matrix by a similarity transformation.
More generally, a map is diagonal if we can construct a complete basis for the space it acts on out of
eigenvectors of that map.

Definition 14.5. A Cartan subalgebra h of g is a maximal abelian subalgebra containing only AD elements.

Unpacking this definition, a Cartan subalgebra therefore has the following properties.
i) H ∈ h =⇒ H is AD.

ii) H, H′ ∈ h =⇒ [H, H′] = 0.
iii) If X ∈ g and [X, H] = 0∀H ∈ h then X ∈ h (this is what we mean by maximal).

Definition 14.6. The dimension of the Cartan subalgebra,

r ≡ dim[h],

is known as the rank. It turns out that all possible Cartan subalgebras h ⊂ g have the same dimension, so it
makes sense to say that r is the rank of g.

Example 14.7. In LC(SU(2)), we have H = σ3 and E± = 1
2 (σ1 ± iσ2). We explicitly wrote down the

eigenvalues and eigenvectors of the ad map of H, so H is ad-diagonalizable. We may choose h = spanC{H}.
We could have chosen σ1 or σ2 as our element of the Cartan subalgebra (cooking up combinations of the
other two Pauli matrices so that adσ1 or adσ2 is diagonal). However, we could not have chosen E+ as the element
of our Cartan subalgebra. This is apparent when we write down E+ as a matrix:

E+ =

(
0 1
0 0

)
is clearly not diagonalizable and therefore not ad-diagonalizable.

Example 14.8. Consider g = LC(SU(n)), the set of traceless complex n× n matrices. A natural basis set is
the pairs of diagonal elements

(Hi)α,β = δαiδβi − δα(i+1)δβ(i+1).

For instance, H1 looks like

H1 =


1 0
0 −1

0
. . .

 .

We now claim that the diagonal elements Hi, i = 1, . . . , n− 1 are generators of the Cartan subalgebra, i.e.

h = spanC{Hi, i = 1, . . . n− 1}.

It’s clear that the diagonal elements Hi commute and therefore have vanishing bracket,

[Hi, H j] = 0 ∀i, j = 1, . . . , r.

But passing to the adjoint representation, this means that

(adHi ◦ adH j − adH j ◦ adHi ) = 0,

so our basis elements Hi naturally define r linear maps

adHi : g→ g
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which are simultaneously diagonalizable (i.e. we can find a single set of eigenvectors which are compatible
with all the linear maps). Therefore g is spanned by the simultaneous eigenvectors of adHi . What may we
conclude from this? Well, the ad map adHi has some zero eigenvalues:

adHi (H j) = [Hi, H j] = 0∀i, j = 1, . . . , r

so the ad map has r zero eigenvalues.
The map also has non-zero eigenvalues which correspond to some set of eigenvectors

{Eα, α ∈ Φ}

with Φ some set of eigenvalues. The ad map acts on these Eα by

adHi (Eα) = [Hi, Eα] = αiEα

where the αi ∈ C, i = 1, . . . , r are not all zero. (If they were all zero, Eα would be in h by the maximality
condition.) In L(SU(2))C, these eigenvectors were just the elements E±.

Definition 14.9. These values αi define a root α of g. That is, a root α can be thought of as an abstract label
on the eigenvectors Eα defining its eigenvalues under the ad map adHi . We’ll see another way to think of
roots shortly, as objects in their own right (namely, linear maps) which act on the elements Hi ∈ h. More on
this next time.

Lecture 15.

Cartan Classification Continued: Tuesday, November 6, 2018

Last time, we started discussing the Cartan classification of finite-dimensional simple complex Lie alge-
bras. We defined the Cartan subalgebra, the maximal abelian subalgebra containing only ad-diagonalizable
elements. We defined the rank of the Cartan subalgebra of a Lie algebra g as

Rank[g] = dim h = r.

Now the idea is that if Hi, i = 1, . . . , r is a basis for the Cartan subalgebra, then [Hi, Hj] = 0 and all
the Hi considered as matrices can be simultaneously diagonalized in some basis. We conclude that g is
spanned by simultaneous eigenvectors of Hi.

Recall that there are some eigenvectors Eα ∈ g of the ad maps adHi with non-zero eigenvalues. That is,
there exists a set of elements Eα which satisfy

adHi (Eα) = [Hi, Eα] = αiEα,

with αi ∈ C, i = 1, . . . , r. A general element of the Cartan subalgebra H ∈ h can be written

H = ei Hi

where ei represents the components of H, so we can then write the bracket

[H, Eα] = α(H)Eα

where
α(H) : h→ C, H = ei Hi 7→ eiα

i

is now a (multi)linear function taking H ∈ h to the complex numbers C.
A root (i.e. a set of values α = {αi}) therefore defines a linear map h → C, and we think of roots as

elements of the dual vector space h∗ of the Cartan subalgebra h. One can further prove that the roots are
non-degenerate (see Fuchs and Schweigert, pg. 87). For our purposes, we will simply assume this is true.

Then we have a set of roots Φ consisting of d− r distinct elements of h∗ (that is, dim(g)− dim(h)).

Definition 15.1. We define the Cartan-Weyl basis for g to be the set

B = {Hi, i = 1, . . . , r} ∪ {Eα, α ∈ Φ}

with |Φ| = d− r.
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Recall now that by the Cartan theorem, g simple =⇒ the Killing form is non-degenerate. The Killing
form is the natural choice of inner product on the Lie algebra, and it is defined by

K(X, Y) =
1
N

Tr[adX ◦ adY]

(where we have WLOG chosen a normalization constant N ∈ R∗).
We’ll need a few properties of Lie algebras to move forward here. First, the bracket satsifies the Jacobi

identity,
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (15.2)

for all X, Y, Z ∈ g. We have the property of the adjoint representation that taking the ad map commutes
nicely with taking the bracket,

ad[X,Y] = adX ◦ adY − adY ◦ adX (15.3)

for all X, Y ∈ g. Finally, we have the invariance of the Killing form,

K([Z, X], Y) + K(X, [Z, Y]) = 0 (15.4)

for all X, Y, Z ∈ g.
We’d like to prove the following two statements:

i) ∀H ∈ h, α ∈ Φ, we have
K(H, Eα) = 0.

ii) ∀α, β ∈ Φ, α + β 6= 0,
K(Eα, Eβ) = 0.

Let’s prove this. ∀H′ ∈ h and any H ∈ h, we can write

α(H′)K(H, Eα) = K(H, [H′, Eα])

= −K([H′, H], Eα) by 15.4

= −K(0, Eα) = 0,

where in the first line we have simply moved the α(H′) into the inner product. Hence α ∈ φ, α 6= 0 =⇒
K(H, Eα) = 0. �

The second statement is proved as follows. ∀H′ ∈ h, we write

(α(H′) + β(H′))K(Eα, Eβ) = K([H′, Eα], Eβ) + K(Eα, [H′, Eβ])].

But by15.4, this whole expression vanishes. Therefore ∀α, β ∈ Φ, α + β 6= 0∀H′ ∈ h,

=⇒ K(Eα, Eβ) = 0 if α + β 6= 0. �

Let’s prove one more lemma.
iii) ∀H ∈ h, ∃H′ ∈ h such that K(H, H′) 6= 0.

The proof is as follows. For some H ∈ h, assume that no such H′ exists. Then

K(H, H′) = 0∀H′ ∈ h.

But from i) above, we know that
K(H, Eα) = 0∀α ∈ Φ.

Since the matrices Hi ∈ h and Eα ∈ g form a basis for g, this means that

K(H, X) = 0∀X ∈ g =⇒ K is degenerate,

which contradicts our assumption that K was non-degenerate. Therefore ∃H′ ∈ h with K(H, H′) 6= 0. �
Therefore it is not only the case that K is a non-degenerate inner product on g; in fact, we have proven

the stronger result that K is non-degenerate even when restricted to the Cartan subalgebra h ⊂ g.
In components, we write

K(H, H′) = Kijeie′j
where Kij = K(Hi, H j). Thus iii) implies that K is invertible as an r× r matrix– it has no zero eigenvalues.
That is,

∃(K−1)ij such that (K−1)ijK jk = δk
i .
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Why is this useful? Precisely because K−1 now induces a non-degenerate inner product on h∗, the dual
space. Recall that for α, β ∈ Φ, we get

[Hi, Eα] = αiEα and [Hi, Eβ] = βiEα.

Definition 15.5. We therefore define the inner product on elements of the dual space, (·, ·) : h× h→ C, as

(α, β) = (K−1)ijα
iβj.

In the next lecture, we’ll see why this is a natural choice of inner product.

We shall now prove the following statement.
iv) With α ∈ Φ =⇒ −α ∈ Φ with K(Eα, E−α) 6= 0.

From i) we have K(Eα, H) = 0∀H ∈ h, and from ii) we have K(Eα, Eβ) = 0∀β ∈ Φ, α 6= −β. Suppose
−α /∈ Φ. Then we would have

K(Eα, X) = 0 ∀X ∈ g,
which would contradict the non-degeneracy of K on g. Therefore there must be another basis vector E−α

such that K(Eα, E−α) 6= 0. �
Now we’ve almost completely characterized the algebra in the Cartan-Weyl basis. We’ve written

[Hi, H j] = 0 ∀i, j = 1, . . . , r

[Hi, Eα] = αiEα ∀i = 1, . . . , r∀α ∈ Φ.

But there’s one more set of brackets we must compute: the bracket of the step elements with themselves,
[Eα, Eβ]. Fortunately, the computation is not too bad. We can do it with the Jacobi identity:

[Hi, [Eα, Eβ]] = −[Eα, [Eβ, Hi]]− [Eβ, [Hi, Eβ]]

= (αi + βi)[Eα, Eβ],

where we have freely used the antisymmetry of the brackets to switch the order of Eβ, Eα, and also made
use of the known commutation relation of [Hi, Eα]. Thus for α + β 6= 0, we conclude that

[Eα, Eβ] =

{
Nα,βEα+β if α + β ∈ Φ
0 if α + β 6∈ Φ.

That is, we’ve found that when α + β 6= 0, the element [Eα, Eβ] is actually proportional to the step element
with root α + β (if it exists), with some undetermined constants Nα,β.

Lecture 16.

Cartan III: Settlers of Cartan: Thursday, November 8, 2018

Today, we will continue our study of the Cartan-Weyl basis. Recall that we introduced the idea of a
Cartan subalgebra h ⊂ g in the last two lectures. With a little work, we produced a set of basis vectors Eα

where α ∈ h∗ are the set of roots, and they form a basis for the dual vector space h∗.
We found that since the Cartan subalgebra is an abelian subalgebra, the commutator of two elements in

it vanishes by definition,
[Hi, H j] = 0.

The step operators Eα are eigenvectors of the ad map,

[Hi, Eα] = αiEα.

And the bracket of two step operators is either zero or proportional to another step operator,

[Eα, Eβ] =

{
Nα,βEα+β if α + β ∈ Φ
0 if α + β 6∈ Φ

for some (as yet undetermined) constants Nα,β (and with the caveat that α + β 6= 0).
Now, our proof relied on the computation

[Hi, [Eα, Eβ]] = (αi + βi)[Eα, Eβ],
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so [Eα, Eβ] is only an eigenvector with nonzero eigenvalue if α + β 6= 0. Otherwise, for the case α + β = 0
let us consider the inner product

κ([Eα, E−α], H)

and claim it can be written as
κ([Eα, E−α], H) = α(H)κ(Eα, E−α). (16.1)

The proof is straightforward: using the invariance of the inner product, we can rewrite

κ([Eα, E−α], H) = κ(Eα, [E−α, H])

= κ(Eα,−[ei Hi, E−α])

= κ(Eα,−ei(−αiE−α))

= α(H)κ(Eα, E−α),

recalling from last time that if H = ei Hi in some basis, then α(H) = eiα
i. �

But by iv from the previous lecture, we found that

κ(Eα, E−α) 6= 0,

so let us now define

Hα ≡ [Eα, E−α]

κ(Eα, E−α)
.

If we write this as an expression for [Eα, E−α] and substitute into Eqn. 16.1, then by the linearity of the
inner product we see that

κ(Hα, H) = α(H)∀h ∈ h.
This gives us a linear equation on the components ei of H. Note first that we previously computed

[Hi, [Eα, Eβ]] = (αi + βi)[Eα, Eβ]. If we set α = −β, we find that the element [Eα, E−α commutes with all the
generators Hi of the Cartan subalgebra. By the maximality assumption, this means that [Eα, E−α] ∈ h, so it
makes good sense to expand Hα (which is nothing more than a rescaled version of [Eα, E−α) in a basis for h.

Now writing Hα and H in a basis for h,

Hα = ρα
i Hi, H = ei Hi ∈ h,

the equation becomes
Kijρα

i ej = αjej

or equivalently
Kijρα

i = αj,

so we can solve for the components ρα
i of Hα in terms of the roots ′alphaj:

ρα
i = (K−1)ijα

j =⇒ Hα = ρα
i Hi = (K−1)ijα

j Hi.

Therefore we find that

[Eα, Eβ] =


Nα,βEα+β if α + β ∈ Φ
κ(Eα, E−αHα if α + β = 0
0 otherwise.

What properties does this Hα ∈ h have? ∀α, β ∈ Φ, we see that

[Hα, Eβ] = (κ−1)ijα
i[H j, Eβ]

= (κ−1)ijα
iβjEβ

= (α, β)Eβ,

where we see that as promised, κ−1 has a natural interpretation as an inner product on elements α, β in the
dual space. Now for all α ∈ Φ we shall define

eα =

√
2

(α, α)κ(Eα, E−α)
Eα
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and
hα =

2
(α, α)

Hα.

Note that we require (α, α) 6= 0 for these expressions to be sensible– see e.g. Fuchs and Schweigert pg. 87
for the proof.

Supposing these elements are well-defined, we now get a similar set of brackets in this basis (written in
terms of the roots α). That is,

[hα, hβ] = 0

[hα, eβ] =
2(α, β)

(α, α)
eβ

[eα, eβ] =


nα,βeα+β α + β ∈ Φ
hα α + β = 0
0 otherwise.

Let’s look at a specific example. Consider LC(SU(2)) subalgebras. We have

α ∈ Φ =⇒ −α ∈ Φ.

Now for each pair ±α ∈ Φ, we get a subalgebra of LC(SU(2)) spanned by the set

{eα, e−α, eα}.
Our brackets therefore tell us that

[hα, e±α] = ±2e±α

[e+α, e−α] = hα,

so we immediately recover the subalgebra structure we saw before. Let us label these subalgebras by our
choice of root α and call the corresponding subalgebra sl(2)α.

Then as a consequence, we get what are called root strings.

Definition 16.2. For α, β ∈ Φ, define the α-string passing through β as the set of roots of the form β+ ρα, ρ ∈ Z.
That is,

Sα,β = {β + ρα ∈ Φ, ρ ∈ Z}.

Now there is a corresponding vector subspace of g which we can obtain by exponentiating the root
string:

Vα,β = spanC{e
β+ρα; β + ρα ∈ Sα,β}.

Now consider the action of sl(2)α on Vα,β. We see that

[hα, eβ+ρα] =
2(α, β + ρα)

(α, α)
eβ+ρα ∈ Vα,β

=

(
2(α, β)

(α, α)
+ 2ρ

)
eβ+ρα.

By a similar computation, we find that

[e±α, eβ+ρα] ∝ eβ+(ρ±1)α if β + (ρ± 1)α ∈ Φ,

and it is zero otherwise. Therefore Vα,β is a representation space for a representation R of sl(2)α. In
particular,

R(hα) = adhα and R(e±α) = ade±α .
We see that R has a weight set given by

SR = {2(α, β)

(α, α)
+ 2ρ; β + ρα ∈ Φ}.

Now the representation R has some direct sum representation:

R = RΛ1 ⊕ . . .⊕ RΛL , Λl ∈ Z≥0.
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The total weight set is of course the union of all the individual weight sets of the elements of the direct
product:

SR = SΛ1 ∪ . . . ∪ SΛL .
It’s also true that ∀Λ ∈ Z≥0, we have a weight set which can be written

SΛ = {−Λ,−Λ + 2, . . . ,+Λ}.
But recall that our set of roots is non-degenerate– each α ∈ Φ appears once and only once. So the
non-degeneracy of the roots of g means that the weights of our representation R are also non-degenerate.
Therefore

SR = SΛ = {−Λ,−Λ + 2, . . . ,+Λ}.

Lecture 17.

Root Geometry: Saturday, November 10, 2018

In general, if we consider a real Lie algebra gR, such that dim(gR) = D, its Killing form κab will also in
general be real. Treating κ as a D× D matrix, one can then ask about the signature of the matrix, i.e. how
many positive and negative eigenvalues κ has when interpreted as a matrix, and more generally whether
they are all of the same sign.

Definition 17.1. A real Lie algebra gR is of compact type if ∃ a basis in which

κab = −Kδab, K ∈ R+.

If we have a basis for gR with gR the real span of the generators {Ta, a = 1, . . . , D} then we can take the
complexification of gR, which is defined to be the complex span of the same basis vectors,

gC = SpanC{T
a, a = 1, . . . , D}.

However, going back to a real Lie algebra from a complex one is harder– there may be several real Lie
algebras which have the same complexification. Instead, we say that gR is a real form of gC.

Theorem 17.2. Every complex semi-simple Lie algebra of finite dimension has a real form of compact type.

This may be helpful on the final question of Example Sheet 2.
Continuing with our discussion of root strings, we previously defined

Sα,β = {β + ρα ∈ Φ, ρ ∈ Z}.
We then argued that for Vα,β the representation space of a repn R of sl(2)α, there was a weight set

SR = {2(α, β)

α, α
+ 2ρ; β + ρα ∈ Φ}.

We then noted that if we conisder the irreps RΛ of sl(2)α for some Λ ∈ Z≥0, we get

SR = SΛ = {−Λ,−Λ + 2, . . . ,+Λ}.
The allowed values of ρ are then ρ = n ∈ Z such that n− ≤ n ≤ n+, n± ∈ Z are some bounding values. By
comparing the expression for the weight set with the minimum and maximum weights ±Λ, we see that

−Λ =
2(α, β)

(α, α)
+ 2n−

+Λ =
2(α, β)

(α, α)
+ 2n+

=⇒ 2(α, β)

(α, α)
= −(n+ + n−) ∈ Z.

However, we also know that the allowed set of roots form an unbroken string,

Sα,β = {β + nα; n ∈ Z, n− ≤ n ≤ n+}.
So this places a constraint on what the roots can be. This inner product constraint would be a lot stronger
if we could guarantee the roots were real.



42 Symmetries, Fields, and Particles Lecture Notes

Let’s pass for a moment to the Cartan-Weyl basis,

[Hi, Eδ] = δiEδ

where i = 1, . . . , r∀δ ∈ Φ. Then we write the Killing form as

κij = κ(Hi, H j) =
1
N

Tr[adHi ◦ adH j ]

Now we remark that it would be very nice if these ad maps were mutually diagonal, since for

A =

λA
1

. . .
λA

n

 , B =

λB
1

. . .
λB

n

 ,

the trace is given simply by

Tr[AB] =
n

∑
i=1

λA
i λb

i .

So let us rewrite the ad maps in terms of the roots (which are of course just the eigenvalues when we
diagonalize both maps):

κij =
1
N

Tr[adHi ◦ adHj ]

=
1
N ∑

δ∈Φ
δiδj.

Moreover we know that

(α, β) = αiβj(κ−1)ij =
1
N ∑

δ∈Φ
αiδ

iδjβ j,

where
αi ≡ (κ−1)ijα

j.

Now since αiδ
i = (α, δ), we see that

(α, β) =
1
N ∑

δ∈Φ
(α, δ)β, δ).

Thus the quantity

Rα,β =
2(α, β)

(α, α)
∈ Z.

Moreover
2

(β, β)
Rα,β =

1
N ∑

δ∈Φ
Rα,δRβ,δ ∈ R =⇒ (β, β) ∈ R∀β ∈ Φ.

We conclude that the inner product of two roots is always real,

(α, β) ∈ R ∀α, β ∈ Φ.

Real Geometry of Roots Now that we know that the roots have real inner products, it makes good sense
to discuss the real geometry of the dual space h∗. Let us now claim that the roots α ∈ Φ are not only
elements of h∗ but indeed span the dual space,

h∗ = SpanC{α ∈ Φ}.

Proof. If the roots α do not span h∗, then ∃λ ∈ h∗ with

(λ, α) = (κ−1)ijλ
iαj = κijλiαj = 0 ∀α ∈ Φ,

i.e. another element λ which is orthogonal to all the roots. Thus we can construct

Hλ = λi Hi ∈ h,

and we can compute some brackets now:

[Hλ, H] = 0 ∀H ∈ h
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and
[Hλ, Eα] = (λ, α)Eα = 0 ∀α ∈ Φ.

But this is very strange, because this means that [Hλ, X] = 0∀X ∈ g. This means that g has a non-trivial
ideal, namely

j = SpanC{Hλ}.
But this would mean that g is not simple, so we have reached a contradiction. �

Therefore the r roots form a basis for h∗ (with complex coefficients), and we may then define the real
subspace,

h∗R = SpanR{α(i); i = 1, . . . , r},

which is the real span of the roots.
Since the roots span h∗, any root β ∈ Φ can be written as

β =
r

∑
i=1

βiα(i)

with β ∈ C generically. However, if we take the inner product of β with each of the α(j)s, we find that

(β, α(j)) =
r

∑
i=1

βi(α(i), α(j).

However, we know that the inner products of the roots α are real, so (a(i), α(j)) considered as an r× r matrix
is real, and (β, α(j) considered as a vector of length r is also real. Therefore all the coefficients βi must also
be real, which means that all the roots live in the real subspace:

β ∈ h∗R ∀β ∈ Φ.

Lecture 18.

Simple Roots: Tuesday, November 13, 2018

For a simple Lie algebra of dimension d, we defined the set of r roots α in some set Φ of size |Φ| = d− r.
In particular, we showed that the roots α not only lie in the dual space to the Cartan subalgebra h∗ but
indeed they form a basis for h∗.

That is, a basis for h∗ is given by

B = {α(i), i = 1, . . . , r, α(i) ∈ Φ}.

Now for a generic element β ∈ Φ, it can be decomposed into its components

β =
r

∑
i=1

βiα(i)

where the coefficients are in general complex, βi ∈ C. We further reasoned that

(β, α(j)) =
r

∑
i=1

βi (α(i), α(j))︸ ︷︷ ︸
(κ−1)ij

.

But since the entries of κ−1 are real and (α, β) ∈ R∀α, β ∈ R, this tells us that

∀β ∈ Φ, β ∈ h∗R = SpanR{α(i), i = 1, . . . , r}.

That is, a generic element of h∗ lies in the real span of the roots.



44 Symmetries, Fields, and Particles Lecture Notes

Not consider the inner product of two general elements of the dual space, λ, µ ∈ h∗R.

λ =
r

∑
i=1

λiα(i) ∈ h∗R

µ =
r

∑
i=1

µiα(i) ∈ h∗R,

with λi, µi ∈ R (since these elements are in h∗R and therefore in the real span).
But this means that their inner product also lies in the real span of the roots,

(λ, µ) =
r

∑
i,j=1

λiµi(α(i), α(j)) ∈ R.

However, we also recall that the inner product of a vector with itself can be written as

(λ, λ) =
1
N ∑

δ∈Φ
λiδiδjλj =

1
N ∑

δ∈Φ
(λ, δ)2.

But now we see that since this inner product is a sum of squares of real numbers, (λ, λ) ≥ 0 with equality
iff (λ, δ) = 0∀δ ∈ Φ. But by the non-degeneracy of the inner product, we see that there can be no element
that is orthogonal to all other elements of Φ unless that element is the zero element, i.e.

(λ, λ) = 0 ⇐⇒ λ = 0.

To summarize, we’ve recovered many of the nice properties of Euclidean space on the roots. The roots
α ∈ Φ live in a real vector space h∗R ' Rr, such that ∀λ, µ ∈ h∗R, the following properties hold:

(a) (λ, µ) ∈ R
(b) (λ, λ) ≥ 0
(c) (λ, λ) = 0 ⇐⇒ λ = 0,

which means that h∗R admits a Euclidean inner product (·, ·).
Since (α, α) > 0∀α ∈ Φ, we can therefore define a length of a root defined as

|α| ≡ +(α, α)1/2 > 0,

and thus an “angle” φ between two roots, which takes the standard form

(α, β) = |α||β| cos φ

with φ ∈ [0, π]∀α, β ∈ Φ.
However, we also recall that there was an integer quantization condition on the inner products, which

we may write as

2(α, β)

(α, α)
=

2|β|
|α| cos φ ∈ Z (18.1)

2(β, α)

(α, α)
=

2|α|
|β| cos φ ∈ Z. (18.2)

We can of course multiply these two RHS expressions together to get another integer, and we find that

4 cos2 φ ∈ Z,

which tells us that

cos φ = ±
√

n
2

where n ∈ {0, 1, 2, 3, 4}.
Thus we have φ = 0, π/2, π corresponding to α = β, (α, β) = 0, α = −β. We also have other possible

values for φ: when φ = π/6, π/4, π/3, then (α, β) > 0, while when φ = 2π/3, 3π/4, 5π/6, then (α, β) < 0.
To recap, not only can we define angles between two roots α, β, but these angles are also constrained to a
finite set.
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Figure 4. An illustration of the division of simple roots into two sets, Φ+ and Φ−. The red
line represents the hyperplane, and α, β, δ are roots in Φ. Φ+ lies above the red line and
Φ− below.

Simple roots Let us divide the roots α ∈ Φ into positive and negative by a hyperplane in h∗. This
hyperplane divides our set of roots Φ into

Φ = Φ+ ∪Φ−

but is otherwise arbitrary. See Fig. 4 for an illustration. We can always construct such a plane by picking
any plane that is not coplanar with any root (if it is, just move the plane a bit) and labeling all the roots on
one side to be the + roots and all the roots on the other to be −. Therefore ∀α, β ∈ Φ, we get the following
nice properties:

(a) α ∈ Φ+ ⇐⇒ −α ∈ Φ−
(b) α, β ∈ Φ+ and α + β ∈ Φ =⇒ α + β ∈ Φ+ (and similarly α, β ∈ Φ−, α + β ∈ Φ =⇒ α + β ∈ Φ−).

Definition 18.3. We now say that a simple root is a positive root which cannot be written as the sum of two
positive roots, i.e.

δ ∈ ΦS (is simple) ⇐⇒ δ ∈ Φ+, δ 6= α + β for any α, β ∈ Φ+.

Simple roots have some good properties.
i) If α, β ∈ ΦS, then α = β is not a root.

Proof. Suppose α− β ∈ Φ. Then either
◦ α− β ∈ Φ+. Then α = α− β + β =⇒ α not simple.
◦ α− β ∈ Φ−. Then β = β− α + α =⇒ β not simple.

Either way, we reach a contradiction, so α− β /∈ Φ. �

ii) If α, β ∈ ΦS, then the α-string through β (α 6= β) takes the form

lα,β = 1− 2(α, β)

(α, α)
∈ N.

Proof. The root string consists of roots

Sα,β = {β + nα; n ∈ Z n− ≤ n ≤ n+}.

But this set certainly contains at least one element– β, with n = 0. Therefore n+ ≥ 0 and n− ≤ 0.
However, we also know that the sum of the bounds n+, n− is given by

(n+ + n−) = −
2(α, β)

(α, α)
∈ Z.
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Since α, β are simple roots, β− α /∈ Φ =⇒ n− = 0. Thus

n+ = −2(α, β)

(α, α)
∈ Z≥0.

We conclude that the root string takes the form

l = n+ − n− + 1 = n+ + 1 = 1− 2(α, β)

(α, α)
∈ N.

�

iii) ∀α, β ∈ ΦS, α 6= β, we have (α, β) ≤ 0. This follows from the previous property about the root string
and the positivity of (α, α).

iv) Any positive root β ∈ Φ+ can be written as a linear combination of simple roots with positive integer
coefficients.

Proof. This is trivially true if β ∈ ΦS is itself a simple root. If β /∈ ΦS, then we can write β = β1 + β2
where β1, β2 ∈ Φ+. If β1, β2 ∈ ΦS, then we are done. Otherwise, we can split β1 = β3, β4 where
β3, β4 ∈ Φ+. The set of roots is of finite dimension, so this process has to terminate eventually with
a full decomposition of β into simple roots. �

v) Simple roots are linearly independent. For clarity of reading, I have moved the proof to the notes for
the next lecture since we only managed to write the first few lines in this lecture.

Lecture 19.

The Cartan Matrix: Thursday, November 15, 2018

Let’s prove property v) from last time– the simple roots are linearly independent. The structure of the
proof is as follows– we will write a general element in the dual space as a sum of the simple roots, and
show that that element must be nonzero unless all the coefficients of the simple roots are zero. Therefore
no nontrivial linear combination of the simple roots vanishes, which means the simple roots are linearly
independent.

Proof. Consider vectors λ ∈ h∗R, which we can write in terms of the basis elements α(i). Thus

λ = ∑
i∈I

ciα(i)

with I a set of indices, α(i) ∈ ΦS, and ci ∈ R some real coefficients. We can split the set of indices I into
I = I+ ∪ I−, where

I+ = {i ∈ I : ci > 0}, I− = {i ∈ I : ci < 0}.
We then define

λ+ = ∑
i∈I+

ciα(i)

λ− = − ∑
i∈I−

ciα(i)

so that
λ = λ+ − λ−,

and we take λ+, λ− to not both be zero.

λ = λ+ − λ−

=⇒ (λ, λ) = (λ+, λ+) + (λ−, λ−)− 2(λ+, λ−)

> −2(λ+, λ−)

= +2 ∑
i∈I+

∑
j∈I−

cicj(α(i), α(j)) > 0.
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In going from the second to third lines, we have used the fact that the inner product of any nonzero element
(specifically, λ+ and λ−) with itself is positive, and in the last line we have used the property that cicj < 0
and (α(i), α(j)) < 0. Thus (λ, λ) > 0 =⇒ λ 6= 0, so the simple roots are linearly independent. (That is,
there is no general nontrivial combination λ of the simple roots α ∈ ΦS which is zero.) �

Since the simple roots are linearly independent, we now see that since |ΦS| ≤ r, by iv) from last time we
find that ∀β ∈ Φ+, β = ∑ ciα(i) with α(i) ∈ ΦS, ci ∈ Z≥0. If β ∈ Φ−, then −β ∈ Φ+ and β = ∑ c̃iα(i). Either
way, the simple roots entirely span the entire set |Φ|, so |ΦS| = r.

Now let us choose the simple roots as a basis for h∗R. Thus the set

B = {α ∈ ΦS}
= {α(i) : i = 1, . . . , r}

completely spans h∗R.

Definition 19.1. We now define the Cartan matrix Aij, given by

Aij =
2(α(i), α(j))

(α(j), α(j)
∈ Z, (19.2)

with i, j = 1, . . . , r. We know the elements of A are in Z by our previous results about root strings.

Now we will relate this back to subalgebras.

Definition 19.3. For each α(i) ∈ ΦS, we get an sl(2)α(i) subalgebra spanned by

{hi = hα(i) , ei
± = e±α(i)}.

We call this the Chevally basis.

How does this compare to our old subalgebras? Let’s write down some brackets.

[hi, hj] = 0 ∀i, j = 1, . . . , r

[hi, ej
±] = ±Ajiej

±

Note that repeated indices are not summed over here. The bracket [ei
+, ej
−] takes some care to compute.

When i = j it is just hi, but when i 6= j, we have

[ei
+, ej
−] = nije

α(i)−α(j) if α(i) − α(j) ∈ Φ,

and it is zero otherwise. However, since α(i), α(j) are simple roots by assumption, it must be that α(i)− α(j) /∈
Φ, so this bracket is always zero. We conclude that

[ei
+, ej
−] = δijhi.

Here’s another bracket:

[ei
+, ej

+] = adei
+

ej
+

∝ eα(i)+α(j) if α(i) + α(j) ∈ Φ
= 0 otherwise.

Indeed, we could repeat the ad map n times to get that

(adei
+
)nej

+ ∝ enα(i)+α(j) if nα(i) + α(j) ∈ Φ

= 0 otherwise.

But the α(i) root string through α(j) has length

lij = 1−
2(α(i), α(j))

(α(i), α(i))
= 1− Aji.

Therefore we derive the Serre relation:
(adei

±
)1−Aji

ej
± = 0. (19.4)



48 Symmetries, Fields, and Particles Lecture Notes

That is, if we apply the ad map enough times, we will eventually exhaust the elements of the root string.
What we’ve proved is that a finite-dimensional simple complex Lie algebra g is completely determined

by its Cartan matrix.
The Cartan matrix comes with some constraints. Recall it’s defined as

Aij ≡
2(α(i), α(j))

(α(j), α(j)
∈ Z,

Then it satisfies the following.
(a) Aij = 2 with i = 1, . . . , r.
(b) Aij = 0 ⇐⇒ Aji = 0 (by the symmetry of the inner product in the numerator).
(c) Aij ∈ Z≥0 if i 6= j (since α(i) 6= α(j) ∈ ΦS =⇒ (α(i), α(j)) ≤ 0).
(d) det A > 0.

Proof. Note that the Cartan matrix is proportional to κ−1 because of the inner product in the
numerator, so we can write A as Aij = SikDj

k, where Sik = (α(i), α(k)) = (κ−1)ik represents the

κ−1 part and Dj
k = 2

(α(j),α(j))
δ

j
k is diagonal. It’s true that det D > 0, so we only need to prove that

det S > 0 and then our result is true by the property that determinants multiply. Note that κ−1 is a
real symmetric matrix, so we can diagonalize it: S = κ−1 = OΛOT with Λ = diag{ρ1, . . . , ρr} for
ρi ∈ R an eigenvalue of κ−1. But then for any eigenvector vi

ρ, we have

(κ−1)ijv
j
ρ = ρδijv

j
ρ

so

(vρ, vρ) = (κ−1)ijvi
ρvj

ρ = ρ
r

∑
i=1

(vi
ρ)

2.

But (vρ, vρ) = |vρ|2 > 0, so we conclude that each eigenvalue ρ of S is > 0. Thus, det S > 0, which
implies det A > 0. �

Example 19.5. If we take r = 2, then the Cartan matrix looks like

A =

(
2 −m
−n 2

)
.

Here, m, n ∈ Z≥0. Since det A > 0 we know that mn < 4, and so we find that the possible values of m and
n are very constrained:

{m, n} = {0, 0}, {1, 2}, {1, 3}, {1, 1}.

(e) Semi-simple Lie algebras correspond to reducible Cartan matrices (i.e. matrices which can be
written in block diagonal form), so if the Lie algebra is simple then A is irreducible.

This allows us to exclude the boring solution of {m, n} = {0, 0} (which would make A diagonal), leaving
us with three possibilities for A.

Let us also note that relabeling the roots will in general permute the rows and columns of A. We don’t
want to think of these as “different” Cartan matrices, so next time we’ll introduce a sort of diagram known
as a Dynkin diagram which allows us to keep track of which As are related by such relabelings.

Lecture 20.

Cartan Classification Concluded: Saturday, November 17, 2018

Last time, we defined the Cartan matrix Aij and said that for simple Lie algebras, we have some strong
constraints on the possible Cartan matrices. They are as follows:

(a) Aii = 2
(b) Aij = 0 ⇐⇒ Aji = 0
(c) Aij ∈ Z≤0 for i 6= j
(d) det A > 0
(e) A irreducible (cannot be written in block diagonal form).
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Figure 5. The Dynkin diagrams for the four infinite families of Lie algebras: An, Bn, Cn,
and Dn. By considering cases for small n, we can recognize immediately from the diagrams
that some common Lie algebras are isomorphic. For instance, B2 and C2 have two nodes
connected by two lines with an arrow, so B2 ≈ C2 ≈ LC(SO(5)).

Moreover, our labeling of the simple roots as i = 1, . . . , r is totally arbitrary, so we would like to avoid
overcounting and treat two Cartan matrices as equivalent up to a relabeling of the roots. We do so by using
Dynkin diagrams.

The rules for drawing Dynkin diagrams are as follows.
◦ Draw a node O for each simple root i = 1, . . . , r.
◦ Join nodes corresponding to simple roots α(i) and α(j) such that max{|Aij|, |Aji|} ∈ {0, 1, 2, 3}.
◦ If the roots have different lengths, draw an arrow from the longer root to the shorter one.

If we categorize the kind of simple Lie algebras we can draw up to isomorphism of their Dynkin
diagrams, we find that there are 4 infinite families of Lie algebras, plus five exceptional cases.

◦ An (e.g. LC(SU(n + 1)))
◦ Bn (e.g. LC(SO(2n + 1)))
◦ Cn (e.g. LC(SP(2n)))
◦ Dn (e.g. LC(SO(2n))).

There are also the exceptional cases E6, E7, E8, F4, G2, depicted in Fig. 6.
Note that for n = 1, we have A1 = B1 = C1 = LC(SU(2)). These are diagrams with a single isolated

node. Therefore in terms of the actual Lie algebras,

LC(SU(2)) = LC(SO(3)) = LC(SP(2)).

For the n = 2 case, we find that A2 ≈ LC(SU(3)) (two nodes connected by a single line). Meanwhile,
B2 ≈ C2 ≈ LC(SO(5)) (two nodes connected by two lines and an arrow). From the diagrams, we
observe immediately that D2 = A1 ⊕ A1, since its diagram is just two disconnected nodes. Looking at the
corresponding Lie algebras, we find that LC(SO(4)) ' LC(SU(2))⊕ LC(SU(2)). We also see that A3 = D3
(three nodes connected in a straight line), so we immediately recognize that LC(SU(4)) ' LC(SO(6)).

Gauge theories are naturally associated to (simple) Lie algebras. Sometimes we restrict ourselves to
diagrams with simple links, i.e. without arrows (the “ADE classification”). Simple Lie algebras come up in
string theory too– Michael Green, a former Lucasian professor here at Cambridge, once proved that for
heterotic string theory, the gauge group must either be SO(32) or E8 × E8, or else the theory suffers a fatal
anomaly. Thus even these exceptional cases turn out to be of interest in physics.

Reconstructing g from A The Cartan matrix contains a lot of information about the structure of the original
Lie algebra.

Aij =
2(α(i), α(j))

(α(j), α(j))
=

2|α(i)|
|α(j)|

cos φij.
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Figure 6. The Dynkin diagrams for the five exceptional Lie algebras: E6, E7, E8, F4, and G2.

From here, one can work out the root strings. For example, if g = A2, then the Cartan matrix is

A =

(
2 −1
−1 2

)
.

We learn that g has two simple roots α, β ∈ Φ, such that

2(α, β)

(α, α)
=

2(β, α)

(β, β)
= −1.

From this, we conclude that |α| = |β| and φαβ = 2π/3 since 2 cos φ = −1. Since α, β ∈ ΦS, we know that

their difference is not a root, ±(α− β) /∈ Φ. But the length of the α string through β is lα,β = 1− (α,β)
(α,α) = +2

and a similar calculation yields lβ,α = 2. Therefore since the root strings are

β + nα, α + ñβ ∈ Φ

with n, ñ ∈ Z, it must be that n, ñ ∈ {0, 1}. We conclude that the roots are

α, β, α + β ∈ Φ

and also their negatives,
−α,−β,−α− β ∈ Φ.

Fortunately, the counting works out. For A2 ≈ LC(SU(3)), we know that the dimension is D = 8 and the
rank is r = 2, so the number of step generators (and therefore the number of roots) we expect is indeed 6.

Moreover we can now express a general positive root α ∈ Φ+ in the basis of the simple roots,

α =
r

∑
i=1

niα(i), ni ≥ 0.

We say that the height of a root α is then

t(α) =
r

∑
i=1

ni.

To complete our results, we see that the root system of A2 is

Φ = {±α,±β,±(α + β)}.
We also compute the inner product

(α + β, α + β) = (α, α) + (β, β) + 2(α, β) = (α, α)[1 + 1− 1] = (α, α).
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Figure 7. The roots of the Lie algebra g = A2. There are two simple roots, α and β, and
they are separated by an angle of π/6. Based on the form of the Cartan matrix, we can
take linear combinations and compute their inner products to see the geometric structure
of the dual space h∗.

Thus one can draw a diagram of the roots, as seen in Fig. 7.
Now let R be a representation of a Lie algebra g of dimension N. Recall that representations are maps

which preserve the brackets in the original Lie algebra. In particular, the elements of the Cartan subalgebra
Hi 7→ R(Hi) must have representations, as well as the step generators Eα 7→ R(Eα) ∈ MatN(C).

By the defining property of the Hi, it must be that R(Hi) are diagonalizable, i = 1, . . . , r. Since brackets
are preserved,

[R(Hi), R(H j)] = R([Hi, H j]) = 0 ∀i, j,

which means that the matrices {R(Hi)} are simultaneously diagonalizable. It follows that the representation
space V ' CN is spanned by the simultaneous eigenvectors of {R(Hi)}.

We can think of the full representation space as the direct sum of the eigenspaces spanned by the
eigenvalues,

V =
⊕

λ∈S0

Vλ.

For v ∈ Vλ, we have R(Hi)v = λiv, λi ∈ C. The eigenvalue λ ∈ h∗ is a weight of the representation R, and
collectively they form a weight set SR.

Lecture 21.

Root and Weight Lattices: Tuesday, November 20, 2018

We argued last time that if we have a representation R with representation space V, then we can write V
as the direct sum of the eigenspaces corresponding to the eigenvalues λ, such that

V =
⊕

λ∈SR

Vλ.

These eigenvalues are defined such that ∀v ∈ Vλ,

R(Hi)v = λiv,

and λ ∈ h∗ are the weights of the representation R. They form a weight set SR.
Let us note that the roots α ∈ Φ are precisely the weights of the adjoint representation, where

R(X) = adX ∀X ∈ g.
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In particular, let us now consider the representations of the step operators Eα acting on v ∈ Vλ. What do
the Cartan generators do to the element R(Eα)v?

R(Hi)R(Eα)v = R(Eα)R(Hi)v + [R(Hi), R(Eα)]v

= R(Eα)R(Hi)v + αiR(Eα)v

= (λi + αi)R(Eα)v.

Therefore
R(Eα)v ∈ Vλ+α if λ + α ∈ SR

and it is zero otherwise.
We can now look at the action of the sl(2)α subalgebra. It has elements

{R(hα), R(eα), R(e−α)}.
As V is the representation space, it contains the representation space for some representation Rα of
sl(2)α. Recall that hα = 2

(α,α) Hα is a normalized version of capital Hα, which in turn was defined to be

Hα = (κ−1)ijα
i H j. Now ∀v ∈ Vλ, we have

R(hα)v =
2

(α, α)
(κ−1)ijα

iR(H j)v

=
2

(α, α)
(κ−1)ijα

iλjv

=
2(α, λ)

(α, α)
v.

Bus since the weights of sl(2) are integers, we see that the weights are constrained by this sort of quantization
condition: ∀λ ∈ SR, ∀α ∈ Φ, it holds that

2(α, λ)

(α, α)
∈ Z.

This leads us to the idea of root and weight lattices. Recall that by iv) from a few lectures ago, if β ∈ Φ is a
root, then it can be decomposed into a linear combination of the simple roots α ∈ ΦS:

β =
r

∑
i=1

βiα(i),

with βi ∈ Z. Hence all roots lie in the root lattice, which we denote by

L[g] = {
r

∑
i=1

miα(i) : mi ∈ Z}.

Thus the roots trace out a lattice of points in r dimensions.

Definition 21.1. Let us also note that there are the simple coroots, which are given by

αv
(i) =

2α(i)

(α(i), α(i))
,

and equivalently the coroot lattice

LV [g] = SpanZ{α
v
(i); i = 1, . . . , r}

The weight lattice is dual to the co-root lattice. Thus

LW [g] ≡ LV∗[ f g]

by definition, such that
LW [g] = {λ ∈ h∗R; (λ, µ) ∈ Z, ∀µ ∈ Lv[g]}.

Thus

λ ∈ LW [g] ⇐⇒ (λ, αv
(i)) =

2(αv
(i), λ)

(αv
(i), αv

(i))
∈ Z.
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But let us note that by the quantization condition 2(α,λ)
(α,α) ∈ Z, all the weights of R lie in LW [g].

Definition 21.2. Given the basis B for LV [g] as

B = {αv
(i), i = 1, . . . , r},

we then define the dual basis B∗ to be

B∗ = {ω(i) : i = 1, . . . , r}
for LW [g] such that

(αv
(i), ω(j)) = δij.

We say the basis vectors ω(i), i = 1, . . . , r are the fundamental weights of g. As the simple roots spane h∗R,
we have

ω(i) =
r

∑
j=1

Bijα(j)

where Bij ∈ R, i, j = 1, . . . , r. However, by taking the inner product of this expression with a new root α(k),
we see that

δi
j =

r

∑
k=1

2(α(i), α(k))

(α(i), α(i))
Bjk =⇒ Bjk Aki = δi

j,

where Aki is simply the Cartan matrix. We see that again, the Cartan matrix tells us some powerful
information about the relationship between the dual basis and the original basis. Namely,

α(i) =
r

∑
j=1

Aijω(j).

Example 21.3. Take g = A2, with the Cartan matrix

A =

(
2 −1
−1 2

)
.

Thus α = α(1) = 2ω(1) −ω(2) and β = α(2) = −ω(1) + 2ω(2),which together imply that

ω(1) =
1
3
(2α + β)

and
ω(2) =

1
3
(α + 2β).

From here, the course will move onto useful applications rather than defining more concepts. For
instance, let’s discuss highest-weight representations. Note that every finite dimensional representation R
of g has an highest weight Λ, given by

Λ =
r

∑
i=1

Λiω(i) ∈ SR

where Λi ∈ Z and we may take Λi ≥ 0, such that for the corresponding eigenvector vΛ ∈ V, we have the
coefficients Λi given by

R(hi)vΛ = ΛivΛ, i = 1, . . . , r
and moreover this eigenvector is annihilated by all raising operators,

R(Eα)vΛ = 0 ∀α ∈ Φ+.

As we are working in an irreducible representation, the remaining weights are generated by products of
R(E−α), such that

∏
α

R(E−α)vΛ ∼ ∏
α∈Φ−

R(Eα)vΛ.

Note that any terms with α ∈ Φ+ will kill the heighest weight eigenvector vΛ, and we can always rearrange
the product by using the brackets from the algebra, so it suffices to take only products with α ∈ Φ−.22

22The picture here is simply many copies of the angular momentum relations. If we start from some maximum weight then the
lowering operators will take us down the ladder until we hit the minimum state and are annihilated.



54 Symmetries, Fields, and Particles Lecture Notes

All the remaining weights λ ∈ SR in the representation can be written as

λ = Λ− µ

where

µ =
r

∑
i=1

µiα(i), µi ∈ Z≥0.

Here is a useful result: for any finite-dimensional representation of g, we can write

λ =
r

∑
i=1

λiω(i) ∈ SR,

which implies that

λ−m(i)α(i) ∈ SR : m(i) ∈ Z, 0,≤ m(i) ≤ λi, i = 1, . . . , r.

These coefficients λi are called Dynkin labels.

Lecture 22.

Thursday, November 22, 2018

Last time, we introduced the notion of a weight lattice. We said that taking integer linear combinations
of the fundamental weights, we could get a lattice structure, and that we could then decompose a general
λ ∈ LW [g] in terms of its Dynkin labels λi, such that

λ =
r

∑
i=1

λiω(i).

For finite dimensional irreps, we also argued that there was a highest weight Λ, now considered as an
r-component vector given by

Λ =
r

∑
i=1

Λiω(i) ∈ SR

with SR the weight set of the irrep R. We call the coefficients Λi the Dynkin labels of the representation RΛ.
For any finite dimensional repn (in particular an irrep) we argued that by tracing out the root strings

(equivalently by hitting the highest-weight state with the lowering operators) we can recover all the other
weights. That is, if λ ∈ SR, then

λ−m(i)α(i) ∈ SR, m(i) ∈ Z, 0 ≤ m(i) ≤ λi.

An important step of this algorithm is that we can only subtract the corresponding simple root α(i) if the
coefficient λi of the fundamental weight ω(i) is positive.

Note that the elements of the Cartan matrix tell us what the simple roots are in terms of the fundamental
weights. The roots are the αs and the weights are ωs. See the non-lectured aside to this lecture for further
discussion.

Example 22.1. In A2 we had the simple roots α, β which the Cartan matrix tells us can be written in terms
of the fundamental weights ω(1), ω(2) as follows:

α = α(1) = 2ω(1) −ω(2)

β = α(2) = −ω(1) + 2ω(2).

Let us first consider the representation R(1,0) of A2 where the highest weight element is

Λ = ω(1) = (1, 0) ∈ S f .

Here, we write weights in terms of their coordinates in the weight lattice, so that

(λ1, λ2) ≡ λ1ω(1) + λ2ω(2).
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Figure 8. The weight lattice for R(1,0). The fundamental weights ω(1), ω(2) are the axes in
magenta, such that the coordinates (λ1, λ2) correspond to weights λ = λ1ω(1) + λ2ω(2).
The roots α, β are depicted in dashed blue and red arrows respectively. From the highest
weight element Λ = ω(1) = (1, 0), we first subtract α(1) = α (solid blue arrow) to get the
new element (−1, 1), and then subtract α(2) = β (solid red arrow) from (−1, 1) to get the
final weight (0,−1). Our algorithm terminates when we end up in the lower left quadrant
of the magenta axes (λ1 ≤ 0, λ2 ≤ 0).

Then our algorithm tells us that since λ1 = 1, λ2 = 0, we must subtract the first root α(1) = α to get to the
next weight of the representation. Thus

Λ− α(1) = ω(1) − (2ω(1) −ω(2))

= −ω(1) + ω(2) = (−1, 1) ∈ S f .

Now λ1 = −1 but λ2 = 1 > 0, so we can subtract α(2) = β to get

λ− α(2) = −ω(1) + ω(2) − (2ω(2) −ω(1))

= −ω(2) = (0,−1).

Now both coefficients are non-positive, so our algorithm terminates and these three elements are all
we get. We conclude that dim R(1,0) = 3. This process is illustrated in Fig. 8, as well as for the conjugate
representation starting from the highest weight Λ = ω(2) in Fig. 9.

Irreps of A2 For each dominant integral weight

Λ = Λ1ω(1) + Λ2ω(2) ∈ L̄W
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Figure 9. The weight lattice for R(0,1). From the highest weight element Λ = ω(2) = (0, 1),
we subtract α(2) = β (solid red arrow) to get (1,−1) and then subtract α(1) = α to get the
final weight (−1, 0).

with Λ1, Λ2 ∈ Z≥0, we get an irrep denoted R(Λ1,Λ2). As it turns out (cf. Osborn pg. 113), the dimension is
given by

dim R(Λ1,Λ2) =
1
2
(Λ1 + 1)(Λ2 + 1)(Λ1 + Λ2 + 2).

Note that if Λ1 6= Λ2, then we get a conjugate pair of repns of L(SU(3)) of the same dimension,

R(Λ2,Λ1) = R̄(Λ1,Λ2),

where we send each of the λ ∈ S(Λ1,Λ2) 7→ −λ ∈ S(Λ2,Λ1).
Our formula tells us the results in Table 1. Now for instance we could take R(1,1) with highest weight

Λ = (1, 1). Thus (ω(1) + ω(2) ∈ S(1,1). Then Λ− α(1), Λ− α(2) ∈ S(1,1). Thus

(1, 1)− (2,−1) = (−1, 2) ∈ SR

and
(1, 1)− (−1, 2) = (2,−1) ∈ SR.

Applying the algorithm again, there are also points at

Λ− α(1) − α(2), Λ− α(1) − 2α(2), Λ− 2α(1) − α(2) ∈ SR.

If we draw this, we get a very nice diagram whose vertices are characterized by the points on a hexagon–
see Fig. 10. As it turns out, what our algorithm cannot tell us is that there are two elements of zero weight.

Note that finding these weights is a critical task when we are looking at the representation theory of
physical systems, since the weights correspond to the quantum numbers of particles! This hexagon looks
suspiciously like the Eightfold Way proposed by Murray Gell-Mann.
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Figure 10. The weight lattice for R(1,1). We’ll break this up into steps. As usual, all
coordinates are defined relative to the ω(1), ω(2) axes in magenta.
0. We begin at Λ = ω(1) + ω(2) = (1, 1).
1. From here, we can follow either a red or a blue arrow since both λ1, λ2 > 0. Following the
red arrow (subtracting β) takes us to (2,−1), while following the blue arrow (subtracting
α) takes us to (−1, 2).
2. From (2,−1) our algorithm says that we can follow the blue arrow (subtract α(1) = α)
once or twice to get to (0, 0) and (−2, 1) respectively. From (−1, 2) our algorithm says
we can follow the red arrow (subtract α(2) = β) once or twice to get to (0, 0) and (1,−2)
respectively.
3. (0, 0) is a dead end, but from (−2, 1) we can follow a red arrow to get to (−1,−1).
Similarly from (1,−2) we can follow a blue arrow to get to (−1,−1). Both the coefficients
of ω(1), ω(2) are now non-positive so the algorithm terminates.
As it turns out, our algorithm cannot tell us that there are actually two elements of weight
zero, which we need to complete the octet of weights. More sophisticated counting
arguments can tell us what the correct multiplicity of each weight is, but we will not be
too concerned with them for now.
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R(0,0) 1 (trivial)
R(1,0) 3 (fundamental)
R(0,1) 3 (anti-fundamental)
R(2,0) 6
R(0,2) 1
R(1,1) 8 (adjoint)
R(3,0) 10
R(0,3) 1

Table 1. The irreps (irreducible representations) of the Lie algebra A2.

Tensor products Let RΛ, R̃Λ′ be irreps of g with representation spaces VΛ and ṼΛ′ respectively. As usual,
they have weight space decompositions, so we can write them as direct sums:

VΛ =
⊕

λ∈SΛ

Vλ

where RΛ has a weight set SΛ, and similar for R̃,

ṼΛ′ =
⊕

λ;∈S̃Λ′

Ṽλ′ .

Now if λ ∈ SΛ and λ′ ∈ S̃Λ′ then λ + λ′ ∈ LW [g] is a weight of the tensor product representation

RΛ ⊗ R̃Λ′ .

Proof. For an eigenvector vλ ∈ Vλ an eigenspace of V, vλ is an eigenvector of the repn RΛ of the Cartan
subalgebra generators Hi:

RΛ(Hi)vλ = λivλ.
Similarly,

ṽλ′ ∈ Ṽλ′ =⇒ R̃(Hi)ṽλ′ = λ′ i ṽλ′ .
Now we recall that the tensor product representation is defined as the representations acting on the vectors
in each space:

(RΛ ⊗ R̃Λ′(Hi)(vλ ⊗ ṽλ′ = RΛ(Hi)vλ ⊗ ṽλ′ + vλ ⊗ R̃Λ′(Hi)ṽλ′

= (λ + λ′)i(vλ ⊗ ṽλ′).

Hence the weight set RΛ ⊗ R̃Λ′ is all such combinations of weights,

SΛ⊗Λ′ = {λ + λ′ : λ ∈ SΛ, Λ′ ∈ S̃Λ′}.
�

For finite-dimensional simple complex g, we can write the tensor product as a direct sum

RΛ ⊗ RΛ′ =
⊕
NΛ′′

Λ,Λ′RΛ′′ .

These coefficients N are the multiplicities of these other representations, if you like. As such, NΛ′′
Λ,Λ′ ∈ Z≥0.

In fact, they are either 1 or 0.

Example 22.2. Let’s sketch an example– for g = A2, we consider the tensor product

R(1,0) ⊗ R(1,0).

The weight set is
S(1,0) = {ω1, ω2 −ω1,−ω2}.

The tensor product is the sum of the two weight sets,

S(1,0)⊗(1,0) = S(1,0) + S(1,0).



22. Thursday, November 22, 2018 59

This is the same game we played when we considered tensor products of angular momentum, except now
we are in L(SU(3)) so the possibilities live in a higher-dimensional space. What we find is that the new
weight set is (just by taking sums of pairs of elements)

S(1,0)⊗(1,0) = {2ω1, ω2, ω1 −ω2, ω2, 2ω2 − 2ω1,−ω1, ω1 −ω2,−ω1,−2ω2}.

Non-lectured aside: weights, roots, and lattices I know I don’t normally do non-lectured asides for this
course since the notes and lecturing are extremely thorough, but let me take a minute to discuss some of
the terminology we’ve been playing with here and put them into context.

Before we ever began Cartan classification, we talked about weights. We introduced weights in the
context of L(SU(2)), where there was one special element H such that R(H) was diagonalizable, and said
that the weights were simply the eigenvalues of the matrix R(H). That is, if R(H) has eigenvectors vλ, then
for

R(H)vλ = λvλ,

we call these eigenvalues λ the weights of the representation.
In hindsight, we recognize that H was just the one-element Cartan subalgebra for L(SU(2)). We defined

the Cartan subalgebra h as a very special subalgebra of the full Lie algebra g, which was the maximal abelian
subalgebra of g where all elements in h are ad-diagonalizable (i.e. for every element H, the eigenvectors of
the ad map adH form a complete basis for the Lie algebra g).

This leads us to generalize the concept of weights when the Cartan subalgebra has more than one
element. In general, the weight set of a representation R is all eigenvalues λi such that

R(Hi)vλi = λivλi

for some element Hi ∈ h. Thus it only makes sense to discuss the weights in the context of a specific
representation.

Moreover, the elements of the Cartan subalgebra had basis elements Hi, i = 1, . . . , r, such that a general
element H ∈ h can be written as H = ei Hi for ei ∈ C. The ad map corresponding to these basis elements,
adHi : g→ g, had sets of eigenvalues αi corresponding to a set of eigenvectors Eα ∈ g, such that

adHi (Eα) = αiEα.

Here, α is doing double duty as both a label on the eigenvectors Eα and as a length-r complex vector
representing the eigenvalues of the ad map adHi with i = 1, . . . , r. We called these objects roots. Using the
language we introduced later, we can also say that the roots are the weights of the adjoint representation.

We then interpreted these roots as elements of the dual space to the Cartan subalgebra, h∗. That is,
an element α is a linear map on the general elements H = ei Hi in the Cartan subalgebra h, such that if
H = ei Hi, then

α(H) = αiei ∈ C
We can make a similar construction for the weights of a general representation– for instance, if R is some
representation then the elements of the Cartan subalgebra correspond to some maps R(Hi) so that if

R(Hi)vλi = λivλi ,

and H is as before, H = ei Hi, then
λ(H) = λiei.

So indeed the weights λ are also elements of the dual space h∗.
We then refined these ideas by arguing that the roots had a well-defined inner product given by the Killing

form κ−1 and therefore a geometry, and moreover we could separate the roots into a set of positive and
negative roots Φ+, Φ−. We defined the simple roots as a set of roots ΦS such that α, β ∈ ΦS =⇒ α− β /∈ Φ.
We did this in order to find a nice set of linearly independent basis vectors for the dual space, and argued
that taking integer linear combinations of the simple roots traces out a root lattice in h∗.

From the simple roots, we got the simple coroots, which are just the simple roots after a normalization:

α∨(i) =
2α(i)

(α(i), α(i))
.
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Then we can consider the dual of these simple coroots under the inner product. These are a set of elements
ω(i) such that

(ω(j), α∨(i)) = δij.

We call these elements the fundamental weights. The fundamental weights now trace out their own lattice
after taking integer linear combinations, known quite sensibly as the weight lattice. Thus the weight
lattice is dual to the coroot lattice, and essentially by definition, the Cartan matrix Aij tells us precisely the
relationship between the simple roots and the fundamental weights:

α(i) =
r

∑
j=1

Aijω(j).

Finally, given a particular finite-dimensional irrep RΛ, there must be a highest weight

Λ =
r

∑
i=1

Λiω(i)

where these Λi are called Dynkin labels. In words, these are simply the coordinates of Λ interpreted as a
vector in the basis of the fundamental weights ω(i). Since RΛ is an irrep, we can reach all the other weights
of the irrep by subtracting off positive integer multiples of the simple roots.

In particular, we have an algorithm to find all the other weights of the irrep. Consider a weight

λ =
r

∑
i=1

λiω(i) = (λ1, λ2, . . . , λr)

If λi > 0, then we can subtract off m multiples of the simple root α(i) from λ where 0 < m ≤ λi, so that
λ− jα(i) is another weight of the irrep. More generally,

λ−m(i)α(i) ∈ SR, m(i) ∈ Z, 0 ≤ m(i) ≤ λi.

The algorithm terminates when we reach an element λ = (λ1, λ2, . . . , λr) with all the λi ≤ 0, and since we
are subtracting simple (positive) roots we are guaranteed not to get caught in an infinite loop.

Lecture 23.

Saturday, November 24, 2018

Last time, we discussed the tensor product of two representations labeled by their highest weights Λ, Λ′.
What we said is that we can decompose the tensor product space into a direct sum, even if the weights λ
live in a higher-dimensional space (cf. L(SU(2)), which had a 1-dimensional weight lattice):

RΛ ⊗ RΛ′ =
⊕
NΛ′′

Λ,Λ′RΛ′′ .

For instance, we worked out with our algorithm that for g = A2,

S(1,0) = {ω1,−ω1 + ω2,−ω2}.
The 9 elements of the direct sum come from taking the sums of pairs of elements, e.g. ω1 + ω1, ω1 + (−ω1 +
ω2), etc. We would like to work out the representations in the direct sum, and we find that

R(1,0) ⊗ R(1,0)︸ ︷︷ ︸
3×3

= R(2,0) ⊕ R(0,1)︸ ︷︷ ︸
6+3

,

so the dimension of the tensor product representation is equivalent to the dimension of the direct sum on
the RHS as we expect. We can play the same highest-weight-and-take-the-remainder game as we did for
the angular momentum representations. That is, since adding the highest weight elements ω1 + ω1 gives
us 2ω1 as the new highest weight of the tensor product representation with multiplicity 1, we must have
R(2,0) in the direct sum. After we remove all the elements of S(2,0) from S(1,0) ⊗ S(1,0), what remains is a
3-dimensional representation which is exactly R(0,1)– see the footnote for details.23

23At the end of the last lecture, I wrote that the weight set of the tensor product was

S(1,0)⊗(1,0) = {2ω1, ω2, ω1 −ω2, ω2, 2ω2 − 2ω1,−ω1, ω1 −ω2,−ω1,−2ω2}
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Symmetries in QM Consider a quantum mechanical system with energy levels En, n ≥ 0. The states of
this system live in a Hilbert space H which we can write as the direct sum of some eigenspaces Hn:

H =
⊕
n≥0
Hn

such that for the Hamiltonian Ĥ,
Ĥ |ψ〉 = En |ψ〉 ∀ |ψ〉 ∈ Hn.

Now by a symmetry transformation we mean a transformation taking states |ψ〉 → |ψ′〉 = Û |ψ〉. A
symmetry transformation is generated by a unitary operator Û : H → H such that Û†Û = Î, and such that

ÛĤÛ† = Ĥ.

The benefit of such a definition is that the inner product is preserved,〈
ψ′1
∣∣ ψ′2

〉
=
〈
Ûψ1

∣∣ Ûψ2
〉

=
〈

Û†Ûψ1

∣∣∣ ψ2

〉
= 〈ψ1| ψ2〉

by unitarity. It also preserves the eigenspaces Hn (i.e. the energy levels): |ψ〉 ∈ Hn ⇐⇒ |ψ′〉 ∈ Hn.
Conserved quantities in our theory correspond to observables (Hermitian operators) ∂̂ = ∂̂†, such that

[∂̂, Ĥ] = 0.

This is in analogy to the Poisson brackets vanishing in classical mechanics. Then we say that the exponential

Û = exp(is∂̂)

generates a symmetry ∀s ∈ R.
It will be useful for us to consider a maximal set of conserved quantities

{∂̂a : [∂̂a, Ĥ] = 0, a = 1, . . . , d}.
But note that we have a natural bracket on operators (the regular commutator). This bracket obeys the
Jacobi identity and the set is closed under the bracket, 24 so this leads us to naturally think of the set as a
Lie algebra:

gR = SpanR{i∂̂
a, a = 1, . . . , d}

equipped with a bracket which we define to be the commutator of operators. As it is a real Lie algebra,

dim[gR] = d.

Our symmetry transformations generated by

Û = exp(X̂), X̂ ∈ gR,

therefore form a compact Lie group G such that

gR = L(G).

or in coordinate notation,

S(1,0)⊗(1,0) = {(2, 0), (0, 1), (1,−1), (0, 1), (−2, 2), (−1, 0), (1,−1), (−1, 0), (0,−2)}.

Running our algorithm for R(2,0) gives the weight set

S(2,0) = {(2, 0), (0, 1), (−2, 2), (1,−1), (−1, 0), (0,−2)}.

Comparing these, we see that what remains is

{(0, 1), (1,−1), (−1, 0)} = S(0,1).

24Since the bracket obeys the Jacobi identity (it is an ordinary commutator), it follows that if [ p̂1, Ĥ] = 0 and [ p̂2, Ĥ] = 0 then

[ p̂1, [ p̂2, H]] + [ p̂2, [H, p̂1]] + [Ĥ, [ p̂1, p̂2]] = [Ĥ, [ p̂1, p̂2]] = 0

by the Jacobi identity. Therefore if our set of conserved quantities is P, then ∀ p̂1, p̂2 ∈ P, [[ p̂1, p̂2], H] = 0 =⇒ [ p̂1, p̂2] ∈ P, i.e. the set
is closed under the bracket. �
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g G
An SU(n + 1)
Bn SO(2n + 1)
Cn Sp(2n)
Dn SO(2n)

Table 2. The four families of infinite dimensional semi-simple Lie algebras and their
corresponding Lie groups.

As [X̂, Ĥ] = 0 ∀X ∈ gR, the energy eigenspaces Hn are invariant, so each Hn carries a representation
Dn of the Lie group G and the associated representation dn of the corresponding Lie algebra gR. These
representations are labeled by the energy levels n. Thus

Dn(Û) = exp(dn(X̂)) ∈ MatNn{C}

where Nn = dim{Hn} and Û = exp(X̂) ∈ G, X̂ ∈ gR.
Moreover, the representation of the Lie group must be unitary, so the representation of the Lie algebra is

anti-hermitian:
D−1

n (Û) = Dn(Û)†∀Û ∈ G ⇐⇒ dn(X̂) = −dn(X̂)†∀X̂ ∈ gR.
We also state the following fact– every complex simple finite-dimensional Lie algebra g has a real form of
compact type. That is, with gR = L(G), G a compact Lie group, we get the results in the table.

What we conclude is that each of the irreps RΛ of a simple Lie algebra g provides a unitary irrep of
some real Lie algebra gR, which we can take to be the symmetries of some physical system. This is because
unitarity is closely related to the invariance of the inner product on the representation spaces, as we showed
explicitly. We have

RΛ(X)† = −RΛ(X)∀X ∈ gR.

Gauge theories Let us recall that we describe a gauge symmetry as a (nonphysical) redundancy in the
description of a system. For instance, we can freely set the phase of a wavefunction in QM– it is only
differences in phase which might have physical significance.

In classical EM, we had the scalar and vector potentials

Φ(x, t), A(x, t).

Since the physical fields are

E = −∇Φ +
∂A
∂t

B = ∇×A,

we see that the fields are preserved under the gauge transformation

φ→ Φ +
∂α

∂t
A→ A +∇α

with α = α(x, t) an arbitrary function. Promoting our theory to a relativistic theory, we say that the
transformation

αµ → aµ + ∂µα

is a gauge transformation, where aµ = (Φ, A). Moreover we can assemble the fields into a gauge-invariant
field strength tensor

fµν = ∂µaν − ∂νaµ.
The corresponding Lagrangian is

LEM = − 1
4g2 fµν f µν,

where we are using the mostly-minus convention for the Minkowski metric, η = {+1,−1,−1,−1}. As
we just saw in Quantum Field Theory, our gauge freedom precisely gets rid of one of the extra degrees of
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freedom in aµ so that when we quantize the field, we get the expected two degrees of freedom for massless
spin 1 particles.25

We also make the slight redefinitions:

Aµ = −iaµ ∈ iR
Fµν = −i fµν.

We do this in order to make the generalization to other Lie algebras clearer (here, we consider SU(2)). For
instance, consider a complex scalar field,

Lφ = ∂µφ∗∂µφ−W(φ∗φ).

This Lagrangian is invariant under a U(1) global symmetry φ→ gφ, φ∗ → g−1φ∗ such that g = exp(iδ) ∈
U(1), δ ∈ [0, 2π).

We might be interested infinitesimal transformations g = exp(εX) ≈ (1 + εX), where ε � 1, and
thus X ∈ L(U(1)) = iR. That is, the elements of the Lie algebra are generators of the infinitesimal
transformations. For our complex scalar field, our transformation acts on the field by

φ→ φ + δXφ

where
δXφ = εXφ.

Similarly we have
φ∗ → φ∗ + δXφ∗

where now
δXφ∗ = −εXφ∗.

The story which we’ll finish next time is that if the overall variation of the Lagrangian with respect to the
symmetry transformation generated by X vanishes,

δXLφ = 0,

then by Noether’s theorem, there is some conserved charge associated to the system.

Lecture 24.

Tuesday, November 27, 2018

Today, we’ll discuss the construction of non-abelian gauge theories, like the Standard Model! Let us first
review the U(1) case. We have a Lagrangian for a complex scalar field:

Lφ = ∂µφ∗∂µφ−W(φ∗φ).

This theory exhibits a global symmetry,

φ→ gφ

φ∗ → g−1φ∗,

such that
g = exp(iδ) ∈ U(1).

That is, the Lagrangian is invariant under such a transformation of the fields, where g does not depend on
the point in spacetime.

Let us also recall that we are interested in connecting Lie groups to Lie algebras, and so we can relate
the Lie group which embodies our global symmetry to the Lie algebra L(U(1)) such that

g = exp(εX), ε� 1, X ∈ L(U(1)) ' iR.

25Actually, aµ naïvely has four degrees of freedom– gauge freedom only gets rid of one. It turns out that a0 is non-dynamical for
Maxwell’s equations in vacuum– it is just a number and its time derivatives do not appear in the fields. So a0 doesn’t really count as a
proper degree of freedom, and thus 4− 2 = 2 polarization states, as expected.
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That is, elements of the Lie group near the identity are related to the exponential of elements of the Lie
algebra in the usual way. Thus the infinitesimal form of our transformation can be written as

φ→ φ + δXφ

φ∗ → φ∗ + δXφ∗,

where

δXφ = εXφ

δXφ∗ = −εXφ∗

and we take X to be independent of the spacetime point x (this will change later). We then argue that the
variation in the Lagrangian (and therefore the action) vanishes to leading order in ε,26

δXLφ = 0.

Let us also recall our discussion of gauge invariance (e.g. from Quantum Field Theory). For instance,
electromagnetism exhibits a gauge U(1) symmetry,

g : R3,1 → U(1).

Gauge symmetries are local– they can vary in space, so we should really write them as X(x). Now as
before we write

g = exp(εX(x)), ε� 1
where

X : R3,1 → L(U(1))
now depends on where in spacetime we are looking.

It’s a useful fact that variations δX act much like derivatives– they are linear, obey the Leibniz rule, and
commute with partial derivatives. Therefore under the symmetry

δXφ = εXφ

δXφ∗ = −εXφ∗,

we see that the kinetic terms transform slightly differently:

δX(∂µφ) = ∂µ(δXφ) = ε(∂µX)φ + εX(∂µφ),

since ∂µX 6= 0 for our new gauge symmetry. So our original Lagrangian Lφ is no longer gauge invariant,
but we can save gauge invariance by promoting the partial derivative to a covariant derivative,

Dµ = ∂µ + Aµ(x),

with Aµ : R3,1 → L(U(1)) = iR. That is, Aµ(x) is some new vector field which depends on space, and will
help us define a gauge-invariant kinetic term in our Lagrangian. Under our gauge transformation, this
U(1) gauge field transforms as

Aµ → Aµ + δX Aµ,
with the variation in Aµ defined to be

δX Aµ = −ε∂µX.
If we now take the variation of our covariant derivative, we see that

δX(Dµφ) = δX(∂µφ + Aµφ)

= ∂µ(δXφ) + (Aµ(δX)φ + (δX Aµ)φ)

= ∂µ(εXφ) + AµεXφ− ε∂µXφ

= εX∂µφ + εXAµφ

= εXDµφ.

26This was actually on Example Sheet 1 of QFT! The proof is straightforward. Since X does not depend on x the spacetime point,
we can just pull it out of the partial derivatives, so the kinetic term varies as

∂µ(φ
∗ − εXφ∗)∂µ(φ + εXφ) = ∂µφ∗∂µφ− εX∂µφ∗∂µφ + εX∂µφ∗∂µφ + O(ε2) = ∂µφ∗∂µφ,

so δX(∂µφ∗∂µφ) = 0. The potential term is essentially the same, but without the derivatives.
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Therefore our gauge field exactly cancels the extra term we got in the partial derivative, and we see that as
the name suggests, the covariant derivative transforms in a nice covariant way (i.e. it transforms like the
fields themselves under a gauge transformation).27

We now write down the Maxwell Lagrangian, which is gauge-invariant–

L =
1

4g2 FµνFµν + (Dµφ)∗(Dµφ)−W(φ∗φ),

with the field strength tensor defined in the usual way as

Fµν ≡ ∂µ Aν − ∂ν Aµ.

It’s a remarkable fact that the only way we know of to quantize a massless spin 1 field involves introducing
the gauge field Aµ.

Having warmed up with Maxwell, let us now generalize this principle to a non-abelian gauge symmetry
based on a Lie group G. We shall choose some representation D of the Lie group G and take D to be of
dimension N so that its representation space V is V ' CN . That is, the field is an N-component complex
vector. We also introduce the standard inner product on vectors in V,

(u, v) = u† · v ∀u, v ∈ V.

Thus our complex scalar field is a map
φ : R3,1 → V.

The corresponding Lagrangian for this complex scalar field will be a kinetic term and a potential term,
as usual:

Lφ = (∂µφ, ∂µφ)−W[(φ, φ)].
Let us take D to be a unitary representation, i.e.

D(g)†D(g) = D(g)D(g)† = In.

Then our representation preserves the inner product on the representation space V:

(D(g)φ, D(g)φ̃) = (D†(g)D(g)φ, φ̃) = (φ, φ̃)

by the unitarity of D(g).
Our Lagrangian is invariant under global transformations,

φ→ D(g)φ ∀g ∈ G,

so near the identity let us look at infinitesimal transformations

g = exp(εX), ε� 1, X ∈ L(G).

Thus we define
D(g) = exp(εR(X)) ∈ MatN(C)

where
R : L(G)→ MatN(C)

defines a unitary representation of the Lie algebra L(G) (i.e. unitary maps on the representation space CN).
That is,

R(X)† = −R(X) ∀X ∈ L(G),
so the representation matrices of the Lie algebra L(G) are anti-hermitian, which implies that the representa-
tion matrices of the corresponding Lie group G are unitary.

Our gauge symmetry is a map from spacetime to the Lie algebra,

X : R3,1 → L(G).

Thus the variation in φ with respect to X is simply

δXφ = εR(X(x))φ ∈ V,

27Compare this with the covariant derivative defined in general relativity, where we are interested in coordinate transformations
rather than transformations of the fields. There, we were led to introduce a connection in order to cancel out the non-tensorial nature
of a quantity like ∂muVν. The principle is the same, but here our fields can be locally transformed by the gauge symmetry, whereas in
GR we were dealing with some overall transformation of the coordinates.
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where now we have explicitly included the spacetime dependence of the element X. But we see there’s a
problem– Lφ is no longer invariant.

Let us try to follow the example of electrodynamics and introduce a gauge field

Aµ : R3,1 → L(G)

which will restore gauge invariance. The variation of this gauge field is

δX Aµ = −ε∂µX + ε[X, Aµ]. (24.1)

Note that both X and Aµ live in the Lie algebra, so this is a sensible construction (their variations/derivatives
also ought to live in the Lie algebra). However, this second term is something special. If X does not vary in
space (i.e. we have a global symmetry), then this second term describes the adjoint action of the Lie algebra
on the gauge field Aµ, which is itself in the Lie algebra.

We now define our covariant derivative for this field as

Dµφ = ∂µφ + R(Aµ)φ.

The covariant derivative Dµφ lives in the So we claim that the covariant derivative has all the properties
we’d like:

δX(Dµφ) = εR(X)Dµφ

and
δXφ = εR(X)φ.

That is, the covariant derivative varies in the same way as the fields themselves.

Proof. We explicitly compute the variation.

δX(Dµφ+ = δX(∂µφ + R(Aµ)φ))

= ∂µ(δXφ) + R(Aµ)δXφ + R(δX Aµ)φ

= ∂µ(εR(X)φ)︸ ︷︷ ︸
(1)

+ εR(Aµ)R(X)φ︸ ︷︷ ︸
(2)

−εR(∂µX)φ + εR([X, Aµ])φ

= εR(∂µX)φ + εR(X)∂µφ︸ ︷︷ ︸
(1)

+ εR(X)R(Aµ)φ + ε[R(Aµ), R(X)]︸ ︷︷ ︸
(2)

−εR(∂µX)φ + ε[R(X), R(Aµ)]

= εR(X)∂µφ + εR(X)R(Aµ)φ

= εR(X)Dµφ.

where we have used the linearity of the map R to move variations through, and explicitly substituted our
gauge field variation 24.1. We rewrote the R(Aµ)R(X) term using a commutator and cancelled it with the
commutator term from the gauge field variation in order to reach our final result– the covariant derivative
transforms like the fields, so our kinetic term is now invariant. �

We now check that the inner product term is okay:

δX [(Dµφ, Dµφ)] = ε(R(X)Dµφ, Dµφ + ε(Dµφ, R(X)Dµφ)

= ε(R(X)Dµφ, Dµφ + ε(R†(X)Dµφ, Dµφ)

= 0 ⇐⇒ R†(X) = R(X)

So our potential term is also gauge invariant.
Finally, we’d like to have an analog of the Maxwell term– here, it takes the form

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν].

We will show next time that this term obeys a covariant transformation law,

δX(Fµν) = ε[X, Fµν] ∈ L(G).
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We previously said that if the symmetries of a theory are described by a Lie group G, then there is a
corresponding Lie algebra L(G) which induces a map

φ : R3,1 → V

the representation space of the representation D of G, and also the representation R of L(G).
A gauge transformation is a symmetry applied locally,

X : R3,1 → L(G)

such that
δXφ = εR(X(x))φ,

where the transformation of the field φ is given by the representation R(X(x)), which depends explicitly
on the spacetime point x ∈ R3,1.

Now we say that the gauge field Aµ is a map

Aµ : R3,1 → L(G)

which locally tells us how to define our covariant derivative. Modeling this after electrodynamics, under a
gauge transformation the gauge field transforms by

δX Aµ = −ε∂µX + ε[X, Aµ] ∈ L(G)

This is sensibly defined since the bracket will give us another element of the Lie algebra, and when the
symmetry is global this just reduces to an adjoint map δX Aµ = ε[X, Aµ]. If the Lie algebra is also abelian,
then the field transforms trivially.

Having defined the gauge field and its variation, we see that the covariant derivative is naturally defined
as

Dµφ = ∂µφ + R(Aµ)φ =⇒ δX(Dµφ) = εR(X)Dµφ.
Indeed, the whole point of defining a covariant derivative is that it transforms like the original fields φ.

With a covariant derivative in hand, we can then define a gauge invariant Lagrangian

L̃ = (Dµφ, Dµφ)−W[(φ, φ)].

This first term is simply a covariant version of the kinetic term ∂µφ∂µφ, while the second term contains any
quadratic potentials we like.

We shall also define a field strength tensor in analogy to electrodynamics. It is

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν].

Note that the gauge symmetry U(1) was abelian, so this last term vanished in electrodynamics. In general,
this need not be true, and the variation of the field strength tensor is then

δX(Fµν) = ε[X, Fµν] ∈ L(G).

Proof. As we’ve mentioned, the variation δX acts like a derivative, so it commutes with partial derivatives
and obeys the Leibniz rule.

δX(Fµν) = ∂µ(δX Aν)− ∂ν(δX Aµ) + [δAµ, Aν] + [Aµ, δX Aν]

= −ε∂µ∂νX + ε∂µ([X, Aν]) + ε∂ν∂µX− ε∂ν([X, Aµ])

− ε[∂µX, Aν]− ε[A, ∂ν, X] + ε[[X, Aµ], Aν] + ε[Aµ, [X, Aν]].

The mixed partial terms cancel, and the derivative hits both of the terms inside the bracket, so ε∂µ([X, Aν])−
ε[∂µX, Aν]− ε[Aµ, ∂νX] = 0. We are left with four terms. We can rewrite the nested bracket using the
Jacobi identity, and regroup terms using the linearity of the bracket:

δX(Fµν) = ε[X, ∂µ Aν]− ε[X, ∂ν Aµ]− ε([Aν, [X, Aµ]] + [Aµ, [Aν, X]]

= ε[X, ∂µ Aν − ∂ν Aµ] + ε[X, [Aµ, Aν])]

= ε[X, Fµν].
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Therefore the variation in Fµν is precisely the adjoint action ε[X, Fµν]. �

Now we will use the Killing form to define a Lagrangian for Aµ using our field strength tensor. We
write down the candidate Lagrangian

LA =
1
g2 κ(Fµν, Fµν),

where the Killing form is the inner product on the field strength tensors. This is invariant for L(G)
semi-simple, since

δXLA =
1
g2 κ(δX Fµν, Fµν] +

1
g2 κ(Fµν, δX Fµν)

= ε
(
κ([X, Fµν], Fµν) + κ(Fµν, [X, Fµν])

)
= 0

by the invariance of the Killing form.
We can also consider a kinetic term provided that L(G) is of compact type, i.e. ∃ a basis B with

B = {Ta, a = 1, . . . , d = dim G}
such that the Killing form is not only non-degenerate but has either positive- or negative-definite signature,

κab = κ(Ta, Tb) = −κδab.

That is, a “metric” with an inconsistent signature would give us wrong-sign kinetic terms. Thus

LA = − k
g2

d

∑
a=1

F(a)
µν Fµν(a).

We require standard, same-sign kinetic terms for each component of the gauge field, or else our theory
becomes wildly unstable (it becomes energetically favorable to have particles moving with higher and
higher energies).

Note that there is a family of consisten theories provided by Cartan– for G a compact simple Lie group,
we get a real Lie algebra gR = L(G) of compact type. We can then complexify this Lie algebra to get a new
Lie algebra g = LC(G), which is a simple complex Lie algebra.

Now with our gauge field
Aµ : R3,1 → L(G),

the matter content of our theory is described by some fields

φ : R3,1 → VΛ

such that VΛ is the representation space for a unitary representation (in particular an irrep) RΛ of gR. Then
Λ ∈ L̄W [g].

Our new Lagrangian is

L =
1
g2 κ(Fµν, Fµν) + ∑

Λ∈S
(DµφΛ, DµφΛ)−W({(φΛ, φΛ), Λ ∈ S}).

These sorts of theories are actually the only renormalizable theories of spin 1 particles that we know of.
The Standard Model is precisely a non-abelian gauge theory of this type, with

GSM = U(1)× SU(2)× SU(3).

There’s a slight caveat, which is that the Standard Model also includes fermions, and so has spinor terms
like (ψ̄, Dψ).

We believe that the strong force is described by an SU(3) gauge symmetry, as listed in Table 3. QCD is
an interesting theory because the gauge symmetry leads to a “color” symmetry, while the global symmetry
leads to “flavor.”

QCD obeys confinement, which means that particles only appear in color singlets 1. Let us look at what
color combinations of quarks are permitted! For two quarks, we have

3⊗ 3 = 6⊕ 3,
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SU(3) global symmetry SU(3) gauge symmetry
ψ 3 3
ψ̄ 3 3

Table 3. The symmetries of the strong force, described by QCD (quantum chromodyna-
mics). Both color and flavor symmetry are key in the representations (and therefore the
physical states) which can be assembled out of individual quarks.

for instance. Three quarks combine as

3⊗ 3⊗ 3 = (6⊕ 3)⊗ 3 = 8⊕ 10⊕ 8⊕ 1.

Therefore we see that three quarks can be combined to form a baryon, since we have recovered a singlet 1,
but two quarks cannot. If we take a quark and an anti-quark instead, we can get

3⊗ 3 = 8⊕ 1,

so a quark and an anti-quark can combine to form a meson.
Looking at the flavor symmetry of baryons, we get the same

3⊗ 3⊗ 3 = (6⊕ 3)⊗ 3 = 8⊕ 10⊕ 8⊕ 1

symmetry, and we find that the lightest baryons form a 8 set of particles, the baryon octet. They are labeled
by the quantum numbers of I, Y (isospin and hypercharge) which form the 8-dimensional representation of
SU(3), i.e. the adjoint representation.

In the end, we see that the course has come full circle– from a mysterious hexagonal diagram and
murmurings of quantum numbers as weights of representations, we have ultimately learned the language
of symmetries in particle physics. We saw how continuous groups of symmetries were generated by
infinitesimal elements of the tangent space, which had their own interesting internal structure. We also
discussed the underlying algebraic structure of the angular momentum operators from quantum mechanics,
and generalized this idea to understand the connections between representations and their fundamental
weights, which in turn are precisely related to the quantum numbers of particles.

We showed that almost all the Lie algebras we’re interested in fall into a fairly simple classification, and
we learned how to construct new representations using the tensor product, as well as how to decompose
them into direct sums algorithmically. Such arguments from representation theory are powerful and
widespread precisely because nature seems to enjoy a large number of symmetries, both approximate and
exact. Finally, we saw that so-called gauge theories are perhaps the most powerful embodiment of these
symmetries. By promoting partial derivatives to covariant derivatives, we arrive at Lagrangians which
are gauge-invariant and therefore enjoy conserved charges based on the particular representation of the
gauge group(s) under which they transform. Such gauge theories include not only the individual theories
of the electromagnetic and strong interactions but the most comprehensive quantum field theory we’ve
constructed to date: the Standard Model. What comes next? Maybe you’ll be the one to figure it out.
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