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This handout provides some key ideas behind the computation of
quasinormal modes and their applications in the study of perturbations
to black hole spacetimes.

Overview

The structure of this talk will be as follows.

• Defining quasinormal modes

• The geometric optics limit

• The photon sphere

• Consequences

Motivation

Whether you’re in astrophysics or mathematical relativity, you
might be interested in techniques to study perturbations to black
hole spacetimes. We might want to use them for more formal ques-
tions like strong cosmic censorship, studying perturbations near the
Cauchy horizon, or we might have more experimentally practical
aims like analyzing the ringdown of a black hole after a merger as
seen by LIGO. Either way, an important concept in BH perturbation
theory is the idea of quasinormal modes, a set of quasistationary solu-
tions to a dissipative wave equation describing perturbations which
decay with time. n.b. Much of this talk is based on [arXiv:0812.1806]
and [arXiv:0905.2975].

Quasinormal modes

The wave equation in curved spacetime

Consider a stationary, spherically symmetric (3 + 1D) black hole
spacetime of the form

ds2 = −F(r)dt2 +
dr2

F(r)
+ r2dΩ2

2.

This could be Schwarzschild, for instance, or Reissner-Nordström.
We won’t assume asymptotic flatness here– the techniques we’ll de-
scribe actually work just as well for asymptotically de Sitter, though
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AdS is a little different. We will assume that there is an event hori-
zon, i.e. there is some r+ > 0 such that F(r+) = 0 and F(r) changes
sign, so that this really is a black hole.

As we showed in Monday’s Black Holes lecture, one can set a mass-
less real scalar field on a curved spacetime. It obeys the Klein-Gordon
equation in curved space, and by decomposing those solutions into
spherical harmonics and a simple time dependence, we find that a
mode solution can be written as

Φ = ∑
lm

ψωlm(r)
r

Ylm(θ, φ)e−iωt,

where the Ylm are spherical harmonics.1 1 The form of the solution is a little
different in Kerr-Newman, where
we lose spherical symmetry. Instead,
we can write a decomposition Φ =
e−iωteimφSωlm(θ)Rωlm(r).

Unlike what we did in class, I will not assume ω is real. In gen-
eral, ω is complex, so that instead of pure oscillating solutions, gener-
ically we will get oscillating and decaying solutions. The picture you
should have in mind is a lump of field stuff sitting in space, which
spreads out and disperses into two lumps. By substituting into Klein-
Gordon, one can show that the radial part of Φ obeys the following
Schrödinger-like equation:2 2 Similar equations can be derived for

higher spin fields.
d2ψ

dr2∗
+ (ω2 −Vl)ψ = 0 (∗)

where

Vl = F(r)
(

l(l + 1)
r2 − F′

r

)
and dr∗ = Fdr.

Definition 1. A quasinormal mode is a mode solution Φ obeying the
boundary conditions

Φ ∼

e−iω(t+r∗) for r∗ → −∞

e−iω(t−r∗) for r∗ → +∞
(1)

These conditions just say that since Vl → 0 at r → r+ and at r →
+∞, the solutions to Eqn. (∗) in these regions are free wave solutions,
ψ ∼ e±iωr∗ . Near the event horizon, solutions must be purely ingoing,
and at spatial infinity, solutions must be purely outgoing.3 3 This is true for asymptotically flat or

de Sitter solutions, but it is different
in AdS because AdS has a timelike
boundary. What boundary conditions
to impose there are a bit more subtle.

The QNMs form an infinite, discrete set of modes with some
eigenfrequencies ωQNM. Unlike the normal modes of oscillation,
they do not form a complete set, so we cannot describe generic initial
data as a sum of quasinormal modes. Instead, we should think of
quasinormal modes as transient, quasistationary states which can be
dynamically excited and then decay.

The eikonal (geometric optics) limit

A few spacetimes admit exact QNM solutions, and many others are
amenable to numerical techniques. However, there is a very useful
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approximation which gives the QNM frequencies almost immediately
in a particular limit. Let me preview the final result:

ωWKB = lΩ0 − i(n + 1/2)|λ|, l � 1

where each of these terms has a nice physical interpretation I will ex-
plain over the course of this talk. Before we can see the nice physical
interpretation, we will have to solve the wave equation.

WKB approximation

Definition 2. The eikonal or geometric optics limit is simply the limit as
l → ∞, i.e. as the angular momentum number describing our mode
solution becomes very large.

That is, we are interested in solutions which oscillate rapidly over
a slowly changing background potential. In this limit, notice that our
Schrödinger equation, Eqn. (∗), becomes

d2ψ

dr2∗
+ Q(r)ψ = 0 where Q ≡ ω2 − F(r)

l2

r2 . (2)

If we sketch Q, we expect something that asymptotes to ω2 (plus
a complex bit) at large |r∗| and dips in the middle. We wrote down
some free solutions in these asymptotic regions, and we’d like a way
to patch them together in this critical region. The WKB approxima-
tion4 provides us a means of doing so. 4 Which you may remember from

undergraduate quantum mechanics,
and which we saw in Wednesday’s
lecture.

Suppose Q(r) has an extremum at some r0. That is, dQ
dr∗

∣∣∣
r=r0

= 0.

The WKB approximation tells us that if we expand Q about this
extremum to order r2

∗, we can write down exact solutions for ψ valid
in this patching region (in terms of parabolic cylinder functions),5 5 This works best when ω2 ∼ Vl,max,

so that our solutions really have the
interpretation of rapidly changing
phase.

provided that Q obeys a quantization condition

Q(r0)√
2 d2Q

dr2∗

∣∣∣
r=r0

= i(n + 1/2), n = 0, 1, 2, . . .

We can solve this for the quasinormal mode frequencies ω to find

ωWKB = l

√
F0

r2
0
− i(n + 1/2)√

2

√
r2

0
F0

d2

dr2∗

[
F(r)
r2

]∣∣∣∣
r=r0

(∗∗)

where F0 = F(r0). In principle, this now gives you all the quasinor-
mal mode frequencies, their real and imaginary parts, in terms of n, l,
and black hole parameters like M and Q, at least in the large l limit.
But this formula as written isn’t very physically meaningful. In the
next calculation, we will show that the quasinormal mode frequen-
cies in the eikonal limit are simply related to the physical parameters
governing unstable null circular orbits in the BH spacetime.
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The photon sphere

Here’s where our physical picture comes back. In most BH space-
times, there is an null circular orbit which we call the photon sphere.
Generally, it is unstable. Given a metric like the one we wrote down
at the beginning, we can use Euler-Lagrange to find some conserved
quantities of the null orbits (E = Fṫ and L = r2θ̇, the energy and an-
gular momentum) and find an effective potential for the r coordinate,

ṙ2 −Vr = 0 with Vr ≡ E2 − F(r)
L2

r2 . (3)

Null circular orbits satisfy

Vr(rc) = 0, V′r (rc) = 0,

where rc indicates the radius of the circular orbit.
Now we notice something interesting. Vr has the same form as the

function Q we wrote down earlier in the Schrödinger equation after
taking the eikonal limit. In particular, it’s easy to check that Q and
Vr will have an extremum at the same value of r,6 so the r0 which 6 This is because d

dr = F d
dr∗ , so away

from zeroes of F, if dQ
dr = 0 then

F dQ
dr∗

= 0 =⇒ dQ
dr∗

= 0.
extremizes Q is actually the radius of the photon sphere, i.e. rc = r0.

That’s what the condition V′r (rc) = 0 tells us. If we set Vr(rc) = 0,
we get an expression relating E and L,

E
L
=

√
F0

r2
0

,

and if we now compute the coordinate angular velocity of the orbit,
we find that

Ω0 ≡
θ̇

ṫ
=

L
E

F0

r2
0
=

√
F0

r2
0

.

This looks familiar. It’s exactly the coefficient of l in Eqn. (∗∗).
The other coefficient also has a physical interpretation. We can

perform a stability analysis by linearizing the geodesic equation
ṙ2 − Vr = 0, i.e. by substituting in a solution r(t) = r0 + δr(t) and
solving for δr(t). One can show that perturbations about the unstable
orbit grow exponentially, as

δr(t) ∼ eλt,

and remarkably,

λ =

√
V′′r
2ṫ2 =

1√
2

√
r2

0
F0

d2

dr2∗

[
F(r)
r2

]∣∣∣∣
r=r0

,

where λ is called the (principal) Lyapunov exponent. This is the
other coefficient in Eqn. (∗∗). In terms of Ω0 and λ, we therefore find
that

ωWKB = lΩ0 − i(n + 1/2)|λ|.
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To sum up, the algorithm for computing quasinormal modes in the
eikonal limit is as follows.

1. Pick your favorite metric ds2 = −F(r)dt2 + dr2

F(r) + r2dΩ2
2.

2. Solve for the photon sphere radius r0.

3. Compute coordinate angular velocity Ω0 =

√
F0
r2

0
.

4. Linearize the geodesic equation about r = r0 and solve for δr(t) ∼
exp(λt) to find the Lyapunov exponent λ.

5. Write down the photon sphere mode frequencies,

ωPS = lΩ0 − i(n + 1/2)|λ|, l � 1.

Final comments

This calculation assumed spherical symmetry, but even axisymmet-
ric spacetimes like Kerr have photon sphere modes. Moreover, this
sort of perturbative calculation is actually very powerful. The eikonal
limit turns out to be largely independent of the spin of the perturba-
tion, so that scalar, electromagnetic, and gravitational perturbations
of static black holes in higher dimensions all have the same behavior
in the eikonal limit (cf. Kodama-Ishibashi, [arXiv:hep-th/0305147]).

It has also been shown by Hintz and Vasy [1512.08004] that the
decay of the quasinormal modes of RNdS and Kerr-dS at large t
determines the regularity of perturbations near the Cauchy horizon.
In fact, an analysis of the photon sphere modes of the Kerr-de Sitter
spacetime is sufficient to prove that scalar field perturbations of any
non-extremal Kerr-de Sitter black hole respect the strong cosmic
censorship conjecture [1801.09694].

These are just some examples of the versatility of quasinormal
modes, and in particular illustrate the utility of the photon sphere
modes in providing an analytical approximation for the QNM fre-
quencies and characteristic decays.
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