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Lecture 1.

Thursday, April 25, 2019

Note. Official course notes are available (as of the time of writing) from http://www.damtp.cam.ac.uk/

/user/aw846/AdSCFT.html.

Size matters... not? To motivate our course, let us start with a story from Galileo. The astronomer Galileo
wrote a treatise entitled “Two New Sciences.” One of these was the heliocentric model of the solar system,
and the other was an early version of the atomic theory. Galileo’s work recognized that because of area-
volume laws, the laws of physics seem to have a scale dependence. Building a scale model of a cathedral is
very different than building a full-sized cathedral because mass scales with volume, whereas the strength
of objects (based on local atomic interactions) scales with area.

On the other hand, there are a class of theories which follow the precepts of another great philosopher,
Yoda, who stated in The Empire Strikes Back that “Size matters not.” These are the so-called conformal field
theories. We could have some object and then scale it up, and it would behave exactly the same. In fact, we
might go so far as to posit that size is an extra dimension of our system! We shall call it z.

But maybe we object to this idea on a few grounds.
1
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◦ Objection #1. Real dimensions should have conjugate momenta. In fact, Noether’s theorem tells
us that under the symmetry ln z→ ln z + C, we get a conserved quantity pz corresponding to the
dilation symmetry.
◦ Objection #2. We can rotate objects. This would require the group of Poincaré symmetries and

dilations to be augmented to some bigger group with d extra generators. Indeed, this happens and
we get the special conformal group.
◦ Objection #3. The speed of light is constant. This seems to tell us that we could measure distances by

measuring the time that light takes to travel over the same scaled-up object. But by taking a cue
from Einstein, we can answer this objection by saying that clocks run slower for bigger objects. That
is, there is a redshift factor ds ∼ ds/z. Our metric would look like

ds2 =
dz2 + (d)ηijdxidxj

z2 , (1.1)

and in fact this is the unique metric which satisfies the conformal symmetries. This is precisely the
metric of Anti-de Sitter space (AdS).
◦ Objection #4. We can’t put objects on top of each other without them interfering (e.g. if we scale

some things up). Fermions are the obvious case, where we expect to run into trouble with the Pauli
exclusion principle. However, there is a loophole. The objects won’t interact much if there are a
large number N of particle species, especially if objects are required to be in singlets (e.g. a gauge
theory SU(Nc), with N ∼ N2

c ).
◦ Objection #5. If N is finite, there will still be a small interaction over large ∆z, which implies the

existence of a long-range universal force. But this looks like gravity! So things are going pretty well.
◦ Objection #6. When the gauge theory is heated up (e.g. we cram a lot of energy into a small space),

we get “deconfinement,” leading to a hyperentropic object with huge O(N) entropy. What we’ve
got is none other than a black hole.

This is the motivation for the AdS/CFT duality (originally posited by Maldacena and elaborated by
Witten and others).

CFTd ↔ AdSd+1 × F (1.2)

where F is a compact fiber. On the left lives an ordinary quantum field theory without gravity, and
on the right lives a full theory of quantum gravity (typically a string theory). The large N limit of the
QFT corresponds to the classical limit (where the Planck length is much smaller than the curvature scale,
lp � RAdS). Moreover, the QFT must be strongly coupled in order to produce local (pointlike) fields on
scales below the AdS scale (ls � RAds, with ls the string length). Finally, QFT has a set of known axioms
(although they are hard to study at strong coupling), whereas we don’t know how to treat quantum gravity
nonperturbatively. Hence we can either use this to learn about strongly coupled field theories by studying
general relativity, or we can try to learn about quantum gravity from the axioms of QFT.

Let’s try to elaborate this idea a little more. In a 4d Maxwell theory, we have an action

I =
1
4

∫
d4x
√
−gFabFcdgacgbd, (1.3)

which is invariant under the Weyl transformations gab → Ω2(x)gab. This is because the two factors of the
inverse metric each scale as Ω−2, and the determinant of the metric is like a volume. Since g is like a length
squared,

√−g ∼ Ωd, so these factors will cancel when d = 4. If the conformal symmetry holds in a QFT,
we call it a CFT.

δ ln Z
δΩ(x)

∼ 〈T〉 ∼ curvature, (1.4)

i.e. variations of the partition function with respect to the factor Ω are proportional to the trace of the stress
tensor, which scales with the curvature. For d = 2, T ∼ cR, while for d = 4, T ∼ a(GB) + cC2 where GB is
the Gauss-Bonnet term and C is the Weyl tensor.

Conformal symmetry requires that the beta functions of the theory vanish. That is, if our couplings
generically depend on scale, λ(z), we require that

dλi
d ln z

= βi = 0. (1.5)
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d translations xa → xa + ca pa ≡ −i ∂
∂xa = −i∂a

d(d−1)
2 Lorentz xa → Λa

bxb(Λ†Λ = 1) Mab = i(xa∂b − xb∂a)
1 scaling/dilation xa → Ωxa D = −i(x · ∂)

d special xa → xa−x2ba

(x−x2b)2 , Ω = x2

(x−x2b)2 Ka = i(x2∂a − 2xa(x · ∂)).
Table 1. A list of the conformal transformations, how points xa transform, and their
generators written in differential operator form.

These usually represent some special isolated points in the space of theories, except in situations where
there is enough supersymmetry to produce e.g. a 1-parameter family of CFTs. Hence many of the theories
of interest in AdS/CFT are supersymmetric.

Lecture 2.

Friday, April 26, 2019

Recall from e.g. General Relativity or String Theory that a Weyl transformation is a rescaling of the metric

gab → Ω2(x)gab. (2.1)

Note that this is slightly different from a conformal symmetry. A conformal symmetry is a diffeomorphism
ξa that preserves gab up to a Weyl factor Ω.

To describe symmetries we shall need a Killing vector ξa, which by definition satisfies ∇aξb + ξbξa = 0.
(That is, Lξ g = 0.) Transformations corresponding to Killing vectors are isometries leaving the metric
unchanged. More generally, we might like a conformal Killing vector, which satisfies

∇aξb +∇bξa −
2
d

gab(∇ · ξ) = 0. (2.2)

The factor of 2/d comes from the fact that the trace of the metric is gabgab = d, so that when we take the
trace of this, we will get something that is always zero.

In Minkowski, gab = ηab. Notice that we can rescale the null coordinates (e.g. the EF coordinates u, v
go to f (u), g(v) for some monotonic functions f , g). In d = 1, 2, there are infinitely many generators for
Minkowski. But for d > 2, there are precisely 1

2 (d + 1)(d + 2) generators.

For a general d dimensions we have d translations, d(d−1)
2 Lorentz transformations, 1 scaling/dilation

transformation, and d “special” conformal transformations, as seen in Table 1. Here, we’ve used an adjoint
notation, Λ†Λc

dgcagdb. Notice that an inversion is a transformation xa → xa

x2 , Ω = 1/x2 (since 1/xa = xa/x2.
Hence the special conformal transformations are equivalent to a translation, an inversion, and another
translation.

Recall that translation symmetry gives us a conserved stress tensor, ∇aTab = 0. We claim the current

Ja = Tabξb (2.3)

is conserved. This follows since

∇a Ja = (∇aTab)ξb + Tab∇aξb (2.4)

= Tab∇(aξb), (2.5)

where the first term was zero because of the regular stress-energy conservation. We’ve symmetrized the
second term by the symmetry of the stress tensor, so the second term is just zero for a Killing vector. As the
stress tensor is traceless, we can certainly subtract off its trace for free so that

Tab∇(aξb) −
1
d

T(∇ · ξ) = 0 (2.6)

for a conformal killing vector. We may compute some commutators to get all the relations between the
generators:

◦ Usual Poincaré commutators
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◦ [D, Pa] = iPa
◦ [D, Ka] = −iKa
◦ [Ka, Pb] = 2i(ηabD−Mab)
◦ [Ka, Mbc] = i(ηabKc − η − acKb)

with all others zero. This is equivalent to the symmetries of SO(d, 2).
We’ve got to be a little careful about our inversion transformations, since an inversion brings infinity in

to the origin and vice versa. So this may not be a real symmetry of Minkowski since it “pushes infinity
around.” Instead, we should look at the maximal conformal extension. For the Euclidean plane R2, this is a
2-sphere with a “point at infinity.” We can see the isomorphism by putting the 2-sphere on the plane and
stereographically projecting from the “point at infinity” on the north pole.

On the other hand, the Lorentzian case is more subtle. In Lorentz signature, |x| = 0 on the light cone.
What happens is we must go to the maximal conformal extension of Minkowski, which is Sd−1 ×R. It is a
cylinder. Our conformal transformations have the effect of flipping or shifting which patch of the cylinder
we are looking at.

We might additionally be interested in representations of the conformal group– how do conformal
transformations act on fields? We shall focus on unitary, positive-energy irreps, which come from fields (i.e.
local operators). In QFT, we construct states by acting on the vacuum with some operator smeared out in
spacetime by a suitable test function,

|ψ〉 =
∫

ddx f (x)O(x)|0〉. (2.7)

The operators O are classified by SO(d) spin and weight of a “primary field” O. By primary field (as we saw
in String Theory), we mean a field which transforms as φ→ Ω∆φ under conformal transformations, where
∆ is called the weight. The derivatives ∂nφ are called descendants, and they transform with derivatives
of Ω. (This is slightly different from the 2D version of primary, where we are additionally interested in
Virasoro). A gauge-invariant operator O must also satisfy “unitarity bounds.” The details depend on the
dimension d, and some concrete examples are as follows:

∆φ ≥
d− 2

2
(scalar) except identity, (2.8)

∆ψ ≥
d− 1

2
(spinor) (2.9)

∆J ≥ d− 1 (vector) (2.10)

∆T ≥ d (symmetric traceless tensor). (2.11)

These bounds are saturated for �φ = 0, /∂ψ = 0,∇a Ja = 0,∇aTab = 0. Notice once things start interacting,
we get anomalous dimensions.

Lecture 3.

Monday, April 29, 2019

Today we shall continue our discussion of conformal symmetry. Note that if you were in Black Holes, you
might recall that when doing QFT in curved spacetime, the vacuum depends on our choice of reference
frame. However, when we do the maximal conformal extension of Minkowski, no such ambiguity is present.
The vacuum on the cylinder is the same as the vacuum in the original Minkowski space.

The picture of the cylinder is also the origin of the “operator-state correspondence,” in which we may
rewrite the time coordinate with Euclidean signature by a Wick rotation τ = it. Hence the cylinder is
isomorphic to a punctured plane (e.g. S1 ×R ∼= R2 \ {0}) and we can set up a correspondence between
states on the cylinder and operators inserted as boundary conditions on the punctured plane, with time
ordering corresponding to radial ordering on the plane.

Recall that last time, we said that scalars have weights obeying

∆φ ≥
d− 2

2
(scalar) (3.1)
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except the identity, which clearly has weight zero. This discussion of weight also requires that we set
h̄ = c = 1, as is conventional, so that there is only one scale in the game. A free scalar field theory has
terms in the action like

∫
∂µφ∂µφddx. Since ∂µ has mass dimension +1 and ddx has dimension −d, our

scalars must have (naive) dimension d−2
2 .

One may then write down the 2-point (correlation) function, which by dimensional analysis can only
look like

〈0|φ(y)φ(x)|0〉 = 1
|x− y|2∆ . (3.2)

That is, it must have dimensions of d− 2, and it can only depend on the separation between x and y (under
translation symmetry). In fact, this needs to be slightly modified to

〈0|φ(y)φ(x)|0〉 = 1
|x− y + iεt̂|2∆ , (3.3)

where t̂ allows us to slightly shift a pole to imaginary time. We haven’t fully explained this correction yet,
but we’ll see why this is the correct correlation function later. The upshot is that the form of the correlation
function is scaled by the scaling symmetry.

The three-point function is also fixed by the full conformal symmetry. Note that the fields in the three
point function could a priori have different weights ∆1, ∆2, ∆3:

〈0|φ3(z)φ2(y)φ1(x)|0〉 = C
|x− y|∆1+∆2−∆3 |x− z|∆1+∆3−∆2 |y− z|∆2+∆3−∆1

. (3.4)

n.b. the four-point and higher functions cannot be derived directly from the conformal symmetry. Specifying
the three-point function is sufficient to completely define the CFT. However, note that in general the
problem is overdetermined– if we pick a three-point function at random, it probably won’t correspond to
a meaningful CFT. The program of trying to determine which three-point functions will give valid CFTs
based on self-consistency conditions is known as the conformal bootstrap.

Spectral decomposition The spectral decomposition is a Fourier transform which allows us to work in a
nicer basis. For a state

|ψ〉 =
∫

f (x)φ(x)ddx, (3.5)

we can define the momentum-space wavefunction φ(p) as

φ(p) =
∫

eip·xφ(x)ddx. (3.6)

Suppose we want to evaluate
〈0|φ(−q)φ(p)|0〉 (3.7)

up to overall normalization. We can do this with dimensional analysis:

〈0|φ(−q)φ(p)|0〉 ∝ δd(p− q)θ(E)|p|2∆−d, (3.8)

with ∆ > d−2
2 . This is because the Fourier transform takes us to a wavefunction which lives in inverse

momentum space. Hence we get two contributions of d from the ddx integrals, one of which is absorbed by
the momentum-conserving delta function.

Note that for ∆ = d−2
2 , we might naively assume that the |p|2∆−d dependence turns into |p|−2. However,

this is wrong. In fact, we get a delta function instead, δ(p2). We can think of this as coming from the fact
that free fields (which saturate this bound) satisfy �φ = 0, which in momentum space corresponds to the
constraint p2 = 0. States with ∆ < d−2

2 will not satisfy unitarity consistent with some positivity constraint.
Hence for the special case ∆ = d−2

2 , we only get states on the light cone. Taking a metric

ds2 = −dudv + dy2
i (3.9)

with d− 2 coordinates yi and two null coordinates v, u, we have 1
p2 = 1

p2
yi−2pu pv

. For states which satisfy

and do not saturate the unitarity bound, ∆ > d−2
2 , our states fill the interior of the future light cone. There

are no normalizable states |ψ〉 with E2 = p2 exactly, though states may come arbitrarily close to being null.
Thus all the physical states do not obey a wave equation unless it is in one higher dimension.
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AdS spacetimes Before focusing on AdS, we’ll start more generally with maximally symmetric spacetimes
in D dimensions (where eventually we shall set D = d + 1). In Minkowski, we have at most D(D+1)

2 Killing
vectors in a D-dimensional spacetime. However, we can also set this many constraints on our spacetime by
specifying the curvature, Rab = gabΛ for Λ some cosmological constant. (The counting works out since Rab
is symmetric.)

There are two interesting cases. For Λ > 0, we get de Sitter space, which can be thought of as the unit
hyperboloid in D + 1 Minkowski space. However, if we take anti-de Sitter space, we instead have the unit
hyperboloid in a signature (D− 1, 2) spacetime with two time coordinates.

Lecture 4.

Tuesday, April 30, 2019

Last time, we promised to explain the iεt̂ prescription in the two-point function. Notice that |x− y|2∆

can vanish when the separation between x and y is null. Hence we need some iε prescription to push one
of the operator insertions slightly into an imaginary direction.

Recall that in momentum space, we have 〈0|φ(−q)φ(p)|0〉 ∝ δd(p− q)θ(E)|p|2∆−d. The step function
here fixes E > 0. Consider now the following integral where WLOG we set y = 0:∫ ∞

−∞
|x|−2∆e−iEtdt, (4.1)

where |x|2∆ = (x2 − t2)∆. This is just the t part of the Fourier transform for the two-point function (up to
normalization). For E < 0, the exponential is suppressed as t→ i∞ (the upper half-plane), so adding +iεt̂
pushes the poles at t = ±|x| down by a little imaginary part. Note also that these are only honest poles if
∆ ∈ Z. Otherwise, we have branch cuts which stretch to −i∞ in the t̂ direction. Either way, this tells us that
we want to focus on the future light cone, and that [φ(y), φ(x)] 6= 0 when y, x are timelike separated.

Back to AdS As we stated, a maximally symmetric spacetime is one such that

Rab = (8πG)
2

D− 2
gabΛ, (4.2)

where we’ve restored proportionality constants.
For the de Sitter case, Λ > 0, we have the unit hyperboloid with one time dimension (Minkowski D + 1),

with metric
ds2 = R2

dS

[
−dτ2 + cosh2(τ)dΩ2

D−1

]
. (4.3)

This just says that spacetime looks like a D− 1 sphere of radius RdS cosh(τ) with a proper time coordinate
τ. The conformal boundary is SD−1 × S0, where by S0 we just mean two points (one at future timelike
infinity and one at past timelike infinity).

On the other hand, for Λ < 0, we have AdS, which is a unit hyperboloid in a spacetime with two time
dimensions, sig(D − 1, 2), with symmetry group SO(D − 1, 2). We can describe our hyperboloid in de
Sitter by x2 + y2 + z2 + . . .− t2R2

dS, so we should make an equivalent construction for AdS. That is,

x2 + y2 + z2 + . . .− t2 − u2 = −R2
AdS (4.4)

where u is our second time coordinate. We may therefore define a metric

ds2 = R2
AdS

[
dρ2 − cosh2(ρ)dτ2 + sinh2(ρ)dΩ2

D−2

]
. (4.5)

This looks like hyperbolic space with a redshift factor. The conformal boundary of AdS is then SD−2 × S1.
However, the fact that our time coordinate has a boundary S1 means that our spacetime has closed timelike
curves. Strictly, we can remedy this by instead taking the universal cover of this spacetime and cover the
spacetime with many sheets so that each time we go around, we are on a new sheet.1

1This is a bit like how the universal cover of S1 is an upward spiral. As we spiral up, we come back to a point which would be
projected down to the same point on the circle, but is distinguished by being on a different coil of the spiral.
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If we now compactify our ρ coordinate, ρ = ∞→ θ = π/2, then our metric takes the form

ds2 =
R2

AdS
(cos θ)2

[
−dτ2 + dθ2 + θ2dΩ2

d−1

]
. (4.6)

In these coordinates, we see that AdS is conformal to a half-sphere. However, note that our metric blows
up as θ → ±π/2. We can draw this as a “tin can” diagram. In addition, the group center of AdS has the
structure of Z, i.e. there are infinitely many discrete antipodal points in AdS. These antipodal points have
the property that the represent points where timelike geodesics reconverge. That is, no matter how fast
we shoot out an object from the origin, its trajectory eventually reconverges at the next antipodal point.
Timelike geodesics are attracted to ρ = 0. Moreover, light rays (null geodesics) can actually make it out to
ρ = ∞, and (with reflecting boundary conditions) can in fact return to ρ = 0 after finite time.

The conformal boundary of AdS has the structure of SD−2 ×R = Sd−1 ×R. Let us also remark that
the half-sphere model allows us to make a very simple consistency check– it is not possible to send light
faster through the bulk than through the boundary. There are no bulk shortcuts. We can see this since the
boundary is an equator of the half-sphere, so trajectories on the boundary are length-minimizing.

It is often convenient to restrict to a patch of the bulk isometric to Minkd on the CFT side. We call this
the Poincaré patch since it has the Poincaré group of symmetries, and it has metric

ds2 = R2
AdS

[
dz2 + (−dt2 + dx2)

z2

]
. (4.7)

Hence t → Ωt, x → Ωx, z → Ωz is a symmetry of this metric and z represents a scale “dimension.” The
future horizon is the z→ +∞ limit, and in this limit the redshift grows arbitrarily large. This tells us the
CFT has arbitrarily low energy.

Lecture 5.

Thursday, May 2, 2019

Scalar fields in AdS-Poincaré Last time, we observed that part of the AdS spacetime is described by
the AdS-Poincaré patch, i.e. a region of the bulk whose boundary is conformal (related by a Weyl
transformation) to half of a D-dimensional Minkowski space. Thus

ds2 =
dz2 + (d)ηijdxidxj

z2
Weyl−−→ (D)ηijdxidxj (5.1)

We shall try to solve the scalar wave equation,

∇2
x−∇2

t︷︸︸︷
� φ = m2φ. (5.2)

Notice that our current signature, the time derivative comes with a minus sign, and the time eigenvalues
(frequencies) are imaginary so that larger mass corresponds to larger oscillations.

The naive scaling dimension of our free field is ∆φ = D−2
2 , so the normalized field is then

φ̃ = z(D−2)/2φ. (5.3)

However, note that �φ is not a conformal wave equation. That is, since φ→ Ω∆φ, �φ will include not only
Ω∆+2�φ terms but also ∇Ω,∇2Ω. The derivatives will hit our conformal factors, so this operator does not
transform as a primary operator.

However, note that Rab is also not a conformal primary. In fact,(
�− D− 2

4(D− 1)
R
)

φ = 0 (5.4)

is conformal. The transformation of R cancels the transformation of �. In AdS, R = −D(D− 1), which we
interpret as a mass shift,

m̃2 = m2 − D(D− 2)
4

. (5.5)
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Maybe we’re worried that m2φ is dimensionful, and so it seems like we might not be able to make
this transform in a nice conformal way. However, we can promote this to a position-dependent mass,
m2(z) ∝ 1/z2. Adding back in z dependence, we end up with the following differential equation:(

∂2
z −

m̃2

z2 + (d)�
)

φ̃ = 0. (5.6)

This might be hard to solve exactly (in terms of some hypergeometric function). But something nice
happens when we take the z → 0 limit. The (d)� term becomes subleading– think of taking the Fourier
transform of φ. Then � becomes a constant −p2, while the other two terms scale like 1/z2.

We might therefore guess that φ̃ has some power law dependence on z,

φ̃ ∼ zν + O(Zν+2). (5.7)

Plugging in, we get
ν(ν− 1)zν−2 − m̃2zν−2 = 0. (5.8)

Collecting coefficients, we get
ν(ν− 1) = m̃2. (5.9)

In general there are two solutions since this equation is quadratic in ν. This is what we should have
expected– it corresponds to a choice of boundary conditions. In the m = 0 case, we would have had a
“potential” which was zero everywhere, and which we could define in the z = 0 limit with either Dirichlet
or Neumann boundary conditions. It’s therefore not too surprising that we get the same choice in the
massive case.

Note that if we take the other limit, z → ∞, the normalizability requires that pi pi < 0 (timelike
normalization). If we tried to put in a tachyonic solution (wrong-sign momentum), the eigenvalue of d�
has the wrong sign and we get solutions which grow exponentially in time rather than oscillating.

The dictionary Here is our first entry in the “dictionary” of AdS/CFT.

O(xi) = lim
z→0

z−νφ̃(z, xi) = lim
z→0

z−∆Oφ(z, xi). (5.10)

That is, an operator on the boundary is equivalent to a field in the bulk in the z→ 0 limit. By dimensional
analysis, we see that

∆O = ∆φ + ν =
D− 2

2
ν =

d− 2
2

+ ν + 1/2. (5.11)

Hence the unitarity bound is saturated for ν = −1/2, and we have the second equality by the dimensional
analysis and the definition of the normalized field.

Let us also observe that our condition ν(ν− 1) = m̃2 corresponds to

m2 = ∆(∆− d) (5.12)

=

(
ν +

d− 1
2

)(
ν− d− 1

2

)
(5.13)

= ν2 − ν +
(d− 1)(d + 1)

4
. (5.14)

This is the conformal mass shift. If we plot this m̃2 versus ∆, we see that between the zeros at ν = 0, ν = 1,
there is actually a regime with extremum at where m̃2 goes a bit negative. So our field is actually permitted
to be a little bit tachyonic, provided that it is not too tachyonic. The minimum which lies at ν = 1/2 is
known as the Breitenlohnen-Freedman bound. There is also another bound, the unitary bound at ν = −1/2.
For if ν = −1/2, then φ2 scales as z−1, the Klein-Gordon norm of our field goes as

∫
φ∗∂tφ, which is

logarithmically divergent or worse. Hence the unitarity bound at ν = −1/2 is actually strict as a cutoff on
operators.

Interestingly, we can actually construct different fields on the boundary consistent with the same bulk
description by imposing different boundary conditions. We’ll see this idea more later. That is, by drawing
the figure we see that there are two values of ∆ which give the same mass m̃. By convention, we pick the
one with larger ∆ to be the operator and the one with lower ∆ to be the source.
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That is, the other solution is a source term in the QFT:

ZQFT =
∫
Dx e−(I[x]+

∫
J·Oddx) (5.15)

Lecture 6.

Friday, May 3, 2019

Last time, we discussed how the scaling dimension of an operator satisfies ∆O(∆O − d) = m2
φ, i.e. how

the mass squared represents a shift in the scaling dimension. Only operators with ∆ above the unitarity
bound of d−2

2 are admissible as operators; the other solutions (to a generally quadratic equation) are
considered as sources.

By writing as a path integral for the quantum field theory on the boundary, we have the partition
function

Z [J]
QFT =

∫
Dx ei(I[x]+

∫
J·O ddx) (6.1)

= ZCFT

〈
T [e−

∫
J·Oddx]

〉
(6.2)

= Zbulk[J]. (6.3)

Here, ZCFT is the source-free CFT, J = 0, and T indicates time-ordering. Note also that we’ve written this
as ZQFT, since the sources will generically break conformal invariance. By our duality, the existence of
sources corresponds to some boundary conditions for physics in the bulk.

By dimensional analysis, ∆J = d − ∆O , so this explains why smaller values of ∆O < d−2
2 can still

correspond to meaningful source terms. In fact, in m2 = 0, an abvious solution is φ = constant (under
the φ→ φ + c symmetry, since the action depends only on derivatives). Hence there is a marginal source
∆J = 0, corresponding to an operator with ∆O = d.

Now our operators and sources can be written as

O(xi) = lim
z→0

(z−∆Oφ(xi, z)− J profile) (6.4)

J(xi) = lim
z→0

(z−∆J φ(xi, z)−O profile), (6.5)

where the J profile term is necessary if ∆O > ∆J and the O profile term is needed if ∆J > ∆O . Sometimes
we may need subleading terms since φ ∼ zν +O(zν+2). If it turns out that ∆J − ∆O ∈ 2Z, then there may
be some coincidences where e.g. �J ∼ O are of the same order, leading to log terms.

Let’s focus in on sources for a second. There are three cases of sources we might be interested in.

◦ ∆J > 0: relevant, i.e. important in the IR of the CFT. These operators matter most in the interior of
the bulk, where length scales are large. The QFT makes sense.
◦ ∆J = 0: marginal (still a CFT to leading order). Usually, these operators turn out to be marginally

relevant or marginally irrelevant at higher order. They are often only exactly marginal in theories
with large amounts of SUSY.
◦ ∆J < 0: irrelevant. These operators become important in the UV limit of the CFT, i.e. the IR of

the AdS. Thus we may have to worry about the UV completion of the theory being potentially
ill-defined.

Holographic RG In a nonlinear φ theory, note that the z ODE (equations of motion in the bulk) corresponds
to an RG flow on the boundary. Hence even though there may be different boundary theories compatible
with the one bulk theory, we can still describe those boundary theories looking at how φ scales with ln z.
These boundary theories are related by an RG flow.

There are some aspects which are scheme-dependent, i.e. they depend on how we do the renormalization.
So e.g. the exact beta functions will generically depend on whether we do dim-reg, set our theory on
a lattice, add a momentum cutoff, etc. to get βα = f (α). However, there are still universal aspects, e.g.
anomalous dimension in CFTs, existence of fixed points, and certain log divergences.
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Bulk vector field We can write down an action for a vector field. It takes the form

I =
∫

dDx
(

1
4

FabFcdgacgbd√−g +
1
2

m2 Aa Abgab√−g
)

, (6.6)

where we have added a Proca mass term. Notice that by the Ω scaling, the first term is conformally
invariant only in D = 4. However, while the second term is not gauge invariant, adding a mass to the
photon gives us an extra degree of freedom (the longitudinal mode). Thus there are D − 2 degrees of
freedom for m2 = 0 and D− 1 for m2 > 0. There is also a longitudinal ghost for m2 < 0, which is bad news
for our theory (so we’d better not set m2 < 0).

Let us specialize to the case of gab = Ω2ηab with
√−η = 1. Hence

I =
∫

dDx
√
−η

[
1
4

ΩD−4FabFab +
1
2

ΩD−2m2 Aa Aa
]

, (6.7)

where indices have been raised with the Minkowski metric η. The equations of motion are

∂a(z4−DFab) = z2−Dm2 Ab. (6.8)

Note that in Poincaré-AdS, Ω = 1/2 and hence

∂iFib + ∂zFzb + (4− D)z−1Fzb = z2m2 Ab. (6.9)

If we try the ansatz Ai(xj) = zν Ji(xj) +O(zν+2), where i, j are d-indices, we find that ∂iFib is subleading,

∂zFzb → ∂2
z Ai + . . . = ν(ν− 1)zν−2 Ji, (6.10)

(4− D)z−1Fzb → (3− d)z−1∂z Ai → (3− d)νzν−2 J1, (6.11)

z2m2 Ab → m2zν−2 Ji. (6.12)

Matching orders, we arrive at the relation

ν(ν− 1) + (3− d)ν = m2 (6.13)

and hence
Ai = Ajη

ij = ±Ai. (6.14)

Undoing the rescaling with xi → Ωxi, z→ Ωz, we find that

∆J = 1 + ν. (6.15)

Hence in terms of ∆, our relation on ν gives

(∆− 1)(∆− d + 1) = m2 (6.16)

and so
m2 = 0 ⇐⇒ ∆ = d− 1 or ∆ = 1. (6.17)

The d− 1 case corresponds to a global conserved current in the boundary theory, while ∆ = 1 corresponds
to a boundary potential. To reiterate, we started with a U(1) gauge field in the bulk, and it ended up corresponding
to a global U(1) symmetry current in the boundary. In general, gauge fields in the bulk correspond to global
symmetries in the boundary.

Lecture 7.

Monday, May 6, 2019

Last time, we studied a massive vector field (Proca field) in the bulk, with action

I =
∫

dDx
(

1
4

FabFab +
1
2

m2 Aa Abgab
)√
−g. (7.1)

Let’s notice that the equations of motion for this field can be written out as

∂iFib + ∂zFzb + (4− D)z−1Fzb = z−2m2 Ab, (7.2)

where indices are raised and lowered with η. Hence under the ansatz that the vector potential Ai scales as
zν Ji plus order zν+2 corrections,

Ai = zν Ji +O(zν+2), (7.3)
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we found that
(∆− 1)(∆− D + 1) = m2, (7.4)

where in the massless case, m2 = 0, we have two solutions. ∆ = d − 1 gives us a conserved (global)
boundary current and ∆ = 1 gives a boundary gauge potential. Of course, we haven’t studied the z
component yet. Let us do that now.

For Az, if m2 = 0 then we have a gauge symmetry δAa = ∇aα which suggests to us that we can impose
a gauge condition. We shall choose a sort of holographic interpretation of the axial gauge, namely

Az = 0. (7.5)

This tells us that on lines of constant xi (i 6= z), the field is constant. Our equations of motion then reduce to

∂iFiz = 0, (7.6)

which we may by the antisymmetry of F rewrite as ∂z(∂i Ai) = 0. Given that this field should be normalizable
in the bulk (i.e. falls off at large z), we can actually conclude that

∂i Ji = 0 = ∇i Ji = 0. (7.7)

Note that while we like to think of our conserved currents as vectors, we should actually think of them like
tensor densities. This is because the natural thing to integrate over is a d− 1-dimensional Cauchy slice so
that
√−gJi

tensor. Moreover, note that we can promote to a covariant derivative in our conservation equation
because m2 = 0, so there is no characteristic mass scale in the theory and we therefore do not get ∂Ω terms
when we take the covariant derivative.

What happens if we turn on the mass, m2 > 0? Since we had the gauge symmetry δAa = ∇aα, we can
try varying the action with respect to α. This variation should vanish to first order. We find that

δα I = m2
∫
∇α · A = −m2

∫
α(∇ · A). (7.8)

Since α is arbitrary, we get a Lorentz gauge-like condition,

∇ · A = 0. (7.9)

The difference is that instead of this being a gauge choice, we get it for free by the variation of the action in
the Proca action. Thus

∇a(Abgab√g) = ∂a(AbzD−2ηab√−η) = 0 (7.10)
for AdS. We find that

Az =
z∆J (∂ · J)

∆J − (d− 1)
, (7.11)

where we’ve argued that the numerator does not in general vanish once we turn the mass on.
What we learn is that a boundary global current Ji(x) corresponds to a bulk gauge field Aa(x, z). This is

generally true for an abelian theory like U(1)– in the case of a non-abelian theory, we would need some
gauge index I for a theory like SU(2),

Ji
I(x)↔ Aa

I (x, z). (7.12)
Moreover, every decent CFT should have a (traceless) stress-energy tensor. Hence

Tij(x)↔ gab(x, z), (7.13)

which we recognize as a dynamical graviton, giving us Einstein gravity. Hence the bulk isn’t precisely AdS
but rather asymptotically AdS, so that our dynamical gravity theory corresponds to an excited state of the
CFT. We won’t focus on supersymmetry here, but let us just note that

SUSY current↔ gravitino, (7.14)

which suggests that in general we would get some sort of supergravity theory in the bulk.
For a conformal irrep Tij(x)|0〉, a linear spin-2 equation is

∇2hab −∇(a∇c)h
c
a +∇a∇chc

c + gAdS
ab (∇c∇dhcd −∇2hc

c) = m2(hab − gAdS
ab hc

c), (7.15)

where this last term is known as the Fierz-Pauli mass. This is how we (self-consistently) turn on the
graviton mass. This field equation restricts us to transverse tracefree modes and implies ∇2hab = m2hab.
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How many degrees of freedom are left? We have (D−2)(D−1)
2 − 1 in the m2 = 0 case (the −1 comes from

imposing the traceless condition), and (D−1)D
2 for m2 > 0. We can also add on a term to an Einstein-Hilbert

action (the quadratic piece of GR/Fierz-Pauli) as2∫
dDx

√
−g(R[g] + 2Λ) +

1
2

m2(habhab − gAdS
ab ha

ahb
b). (7.16)

We ought to think of this as studying linearized perturbations in massive gravity,

gab = gAdS
ab + hab. (7.17)

To linear order we get the equation on hab vanishing in pure Einstein gravity (i.e. m2 = 0).
To a perturbation hij we can associate a boundary term which has the interpretation of a stress-energy

tensor,
hij(x, z) = z∆−2Tij +O(z∆), (7.18)

or equivalently
Tij = lim

z→0
z2−∆hij, (7.19)

and we have a scaling dimension relation

∆(∆− d) = m2. (7.20)

As before, the m2 = 0 case gives two solutions, ∆ = d corresponding to a conserved stress-energy tensor
and ∆ = 0 giving a boundary metric, gab.

Let’s reflect on this calculation. Why are we studying linearized equations when GR is generally
non-linear? Quantum mechanics is linear, so irreps of the conformal group Hirrep ⊂ HCFT and thus
Tij|0〉 = 1-graviton state. Hence we get a linear wave equation Dφ = 0 (for some differential operator D. In
fact, this does not mean that the (linear) CFT is only dual to a linearized version of gravity in the bulk. It is
dual to the full non-linear GR, provided that we study n-point functions using something called Witten
diagrams (like Feynman diagrams), describing scattering and interactions of gravitons in the bulk. The
external edges are given on the boundary of AdS. We have then a correspondence between propagators
from the bulk to boundary and from bulk-to-bulk:

Gbulk→bdy = lim
z′→0

(z′x′)−∆Gbulk→bulk(z, x, z′, x′). (7.21)

We’re being a bit schematic here, but the idea is that we get a Green’s function solving Dφ = 0 and more
generally we could introduce a boundary source.

Lecture 8.

Tuesday, May 7, 2019

Having treated massive perturbations, let us consider the spin-2 massless case, which is none other than
general relativity. For the massive vector field we chose the gauge condition

Az = 0. (8.1)

Can we do something similar for the metric? For asymptotically locally AdS spacetimes, we may introduce
Fefferman-Graham coordinates. In these coordinates, we take

gzz =
1
z2 , gzi = 0. (8.2)

Notice that this gives D conditions on the metric leaving the residual gauge symmetry of diffeomorphisms
and Ω (conformal transformations) on the boundary.

We can’t do this precisely on z = 0, but if we go to a hypersurface of constant z = ε and follow normal
geodesics to this surface (i.e. by ln z = ln ε + proper distance ∈

√
gnndn and zi = const along the normal

geodesics). However, such a coordinate system may not work globally, because the geodesics normal to
z = 0 might converge (cf. conjugate points in Black Holes). This is a local construction near the boundary,
but it will nevertheless let us find some interesting results.

2We sometimes call h a reference metric.
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In these coordinates, we can do an FG (Fefferman-Graham) expansion. That is, we solve the nonlinear
bulk equations of GR in a.l.3 AdS. Thus

(D)gij =
1
z2

[
g(0)ij + z2g(2)ij + z4g(4)ij + . . .)

]
(8.3)

where e.g.

g(0)ij = (d)gij, (8.4)

g(2)ij =
1

D− 2
((d)Rij −

1
2(D− 1)

(d)R(d)gij), (8.5)

and g(4)ij will include two powers of curvature.
The . . . in the expression for the bulk metric depends on whether we are in odd d or even d. For odd d,

we have even powers of z up to
+ zdTij +O(zd+2), (8.6)

whereas in even d, we have
+ zdTij + ln(z)zdh(d)ij (8.7)

because the powers coincide. This last term gives us relations

− 2
d

Ttrace
ij ∝(d) gij, (8.8)

such that in d = 2, this is proportional to cR with c the same central charge of the Virasoro algebra, and in
d = 4 we have ∝ aGB + cW2 (the Gauss-Bonnet term and the Weyl tensor).

Suppose the bulk is weakly coupled, i.e. approximately free when Nquanta ∼ 1, a theory which is classical
at the nonlinear regime. For an operator φi ∼ z∆i it must be that powers of this operator scale as φn ∼ z∑i ∆i ,
i.e. an operator whose weight is the sum of the weights of its factors.

(a) ∃ a collection of operators {Os} whose spectrum is Fock({Os}).
(b) The expectation value of these operators are approximately Gaussian: 〈OsOS . . .OsOS〉 ≈ Gaussian.

In a free field, we only get pairwise couplings in our Witten diagrams which live in the bulk (i.e.
Wick contractions when you only have free propagators). This is called a “generalized free field.”

(c) However, the CFT itself is not actually free– there is no ∆ = d−2
2 field.

Hence we have a theory which is free in the bulk but not in the boundary. It turns out this is actually
typical of “single trace” operators in large-N gauge theory. For instance, take a Yang-Mills Lagrangian,

LYM = tr
(

FµνFµν
)
. (8.9)

Here, Fµν = ∂µ Aν − ∂ν Aµ + g[Aµ, Aν]. This could be SU(N) transforming in the adjoint representation,
for example. We take the trace to get a colorless object (something that will be gauge invariant). Now let
us take the N → ∞ limit holding λ = g2N fixed, where λ is called an t’Hooft coupling. This keeps the
leading-order loop calculations (which scale as g2N) constant even as we take the number of colors N to be
large.

When we treat something like a gluon, we should think of it as really having two arrows– a color and an
anti-color arrow. Hence gluon diagrams will be a set of directed loops.

We can play some Euler characteristic games with our gluon diagramms, associating “half” of an edge
to each of the two vertices it connects. With a factor of N for each facte, we have

g ∼ N−1/2 for 3-vertex (8.10)

and
g2 ∼ N−1 for 4-vertex. (8.11)

One may conclude that the amplitude scales as

Amp ∼ NF−E+V ∼ Nχ. (8.12)

3asymptotically local
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This tells us precisely that the low-genus diagrams dominate, e.g. spheres, torii, n = 2 handlebodies, etc.
And we can introduce interactions/sources by adding e.g. punctures into our sphere, torus, etc. And this
starts to look a lot like we’re doing string theory! This is because in string theory, we also added punctures,
which increase the Euler characteristic of the surface.

Now, just trying to start with a string theory doesn’t exactly work– we must have conformal invariance
on the boundary, and our basic Yang-Mills theory we’ve written down won’t be conformally invariant until
we add in some matter fields. But once we have a proper CFT we get something that looks like weakly
coupled strings. There are some special operators Os which are the single-trace operators of the form

tr(FFFF . . .), (8.13)

as opposed to double trace tr(. . .)tr(. . .) or higher trace operators tr()n, which create (or annihilate) n
strings more generally.

Note that for a derivative term, tr(FDn
µF), we get a tower of higher spin fields such that in the λ � 1

limit, ∆ ≈ the naive (“engineering”) dimension plus small corrections. On the other hand, in the strong
coupling λ� 1 limit, we have ∆s which may get big, meaning that we remove ∆ to high energies except a
small number of operators which are protected. In the next lecture, we will start to present examples of this
duality and discuss how they were derived originally.

Lecture 9.

Thursday, May 9, 2019

Today we’ll discuss how people found actual examples of AdS/CFT using string theory. Now, there are
many versions of the duality known, but we’ll start with the classic version. As a quick convention note,
from now on D is the total bulk dimension including Kaluza-Klein (compactified) dimensions, so it will not
be generally true that D = d + 1. Now, if you took the String Theory course, you might recall that string
theories are filled with p-form fields, i.e. generalizations of the Maxwell equations with extra indices.

Instead on just a vector field Aa, we might start with a p-form Aabcd, where there are p indices, and
such that taking the exterior derivative dA(p) = F(p+1) yields a p + 1-form representing an associated
curvature. Note also that the Hodge star (dual) operation takes us from a p-form to a D− p-form. Hence
F(p+1) ∗←→ F(D−p−1), so that

dA(p) = F(p+1) ∗←→ dÃ(D−p−2) = F(D−p−1). (9.1)

We don’t usually work with both A and Ã at the same time, but we have some freedom in how to choose
which is e.g. our electric and magnetic field.

The form dA(p) is identified with a p− 1-brane (where the number associated to the brane counts the
spatial dimensions only, for historical reasons) and similarly dÃ(D−p−2) is assoicated to a (D− p− 3)-brane.
Perhaps the best-known case is in D− 4, where the electric and magnetic fields both couple to 0-branes
since Aa is a one-form.

NS RR
IIA (10D) B(2) → F1, NS5 C(1) → D0, D6 and C(3) → D2, D4
IIB (10D) B(2) → F1, NS5 C(0) → D(−1), D7 and C(2) → D1, D5 and C(4)→ D3, F(5) = ∗F(5)

These B and C fields are gauge fields of the corresponding degree, and the objects F1, D0, etc. are
the branes to which they couple. The classic example takes the D3 brane, which involves the geometry
AdS5 × S5. Another key example comes from M-theory in 11 dimensions, where A(3) couples to M2, M5
branes corresponding to AdS3 × S7 and AdS7 × S3 respectively.

It’s worth noting that when T = 0 (in conformal symmetry), we get R = 0 and hence the dilaton coupling
e−2φR in the action becomes trivial. In general, we have to take multiple branes to construct the duality, e.g.
by taking D1 and D5 to get AdS3 × S3 × T4.

Suppose we have a stack of N coincident D3 branes. At weak coupling, gSN � 1, we can have some
open strings which start on one brane and connect back to another brane in the stack. We ought to assign
the endpoints some color indices i, j. In particular we may describe adjoints with a U(N) = SU(N)×U(1)
symmetry. The U(1) symmetry is abelian and just describes the center of mass. But something interesting
happens in the low energy limit.
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In this limit, the closed strings decouple– the theory we get is d = 4,N = 4 super Yang-Mills with a
coupling g2 = 4πgs. This is the maximal number of supersymmetries we can have without taking us past
spin 1. In such a theory, we can define helicities:

spin −1 −1/2 0 1/2 −1
helicities 1 4 6 4 1

field A− ψ∗ φ ψ A+.
Our action takes the form

I =
∫

d4x tr
(

1
4

F2
ab + ψ∗ᾱ /Dψα +

1
2
(DφI)

2 +
g2

4
[φI , φJ ]

2 +
g
2

ψ[φ, ψ] +
g
2

ψ∗[φ, ψ∗]

)
. (9.2)

What’s interesting about such a theory is that it actually has so much supersymmetry that all the beta
functions vanish: β = 0, which implies this is in fact a super-conformal field theory (SCFT) for all g.

At strong coupling (gsN � 1), we have instead

I ∼ 1
l8
p

∫
d10x

√
−g
(

R− F2
(s)

)
, (9.3)

which as an extremal geometry with AdS in the near-horizon region, i.e.

ds2 =
1√

1 + L4

r4

(−dt2 + dx162 + dx2
2 + dx2

3) +

√
1 +

L4

r4 (dr2 + r2dΩ2
5), (9.4)

where L4 = 4πl4
pN.

In the low-energy limit (r � L), the exterior and the deep throat region decouple, and hence the netric
reduces to

ds2 =
r2

L2 (−dt + dx2
i ) +

L2

r2 dr2 + L2dΩ2
5. (9.5)

If we define z = L2/r, L = RAdS = RS, then we simply get the geometry of AdS5-Poincaré× S5, and we
have type IIB supergravity in the limit L� ls (where lp = g1/4

s ls).
Adjusting g from weak coupling to strong coupling, we should be able to translate between the Super

Yang Mills with SU(N) symmetry (from the weak coupling limit) and the AdS5-Poincaré× S5 with IIB
SUGRA (from the strong coupling limit). This is Maldacena’s derivation of the AdS/CFT correspondence.

There are some units which will help us translate between the two:
◦ Ncolors = Nbranes = Nflux

◦ lp
L = (4πN)−1/4

◦ ls
L = (4πgsN)−1/4 = (g2

YM N)−1/4 = λ−1/4.
Both these length ratios must be small in order for us to recover classical supergravity. There are two
expansion parameters we can use to go further– there’s 1/N2 ∼ h̄G ∼ quantum corrections, and 1/λ2 ∼
α′ ∼ stringy corrrections. At finite N, we can probe nonperturbative quantum gravity, and at finite λ we
study the full string worldsheet.

There is an S-duality on both sides– on the string side, we can take gs → 1/gs (which switches around
the branes), and this is actually equivalent to gYM → 4π/gYM. If λ is too big, we just recover the original
S-duality on the SUGRA side. Note that this tells us we must have large N in order to have an interesting
limit of the duality, or else we just get the old S-duality back.

Lecture 10.

Friday, May 10, 2019

A brief follow-up from last time. We claimed that in AdS5 × S5, we had T = 0 =⇒ R = 0 by the
conformal symmetry. However, one might worry about the possibility of a trace anomaly in curved space.
Normally, the trace of the stress tensor is proportional to aE + ∑i ciCi, where E is some Euler number term
and the Cis are constructed from many copies of the Riemannn tensor contracted with some εs. However,
because AdS5 × S5 is conformally flat, all the cis vanish and moreover E = 0 for odd-D manifolds without
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boundary. Note also that E(A× B) = E(A)× E(B). Hence E = 0 for AdS5 × S5, so indeed there is no trace
anomaly.

Note that the Newton constant of our spacetime depends on the compact Kaluza-Klein dimensions.
Hence for instance (up to order unity factors)

Gt ∼
G10

Area[S5]/l5
p,10

. (10.1)

Hence gravity gets diluted in the presence of extra dimensions. In general G ∼ lD−2
p .

What evidence do we have that the AdS/CFT correspondence is true? In Maldacena’s original derivation,
he posited that the theory could be interpolated between weak and strong couplings so that the commuting
square diagram really works.

◦ The symmetries match up. Hence the SO(2, 4)× SO(6) + 32 real supersymmetries line up. In N = 4
SYM, we get Weyl spinors with 2 complex components. In the CFT, there are 16 supercharges Qα

A
and 16 superconformal Sα

Ā = XAĀQα
BεAB.There are some anticommutation relations which allow us

to construct the representations of the symmetries,

{QA, Q̄Ā} ∼ PAĀ

{S, S̄} ∼ K

{Q, S̄} ∼ M + R + D,

where P are the +1 spin representations, Q the +1/2, R, M, D the 0 reps, S the −1/2 reps, and K
the −1 reps.
◦ S-duality. SL(2,Z): in SYM, we have g̃ = g + iθ, θF ∧ F and on SUGRA, g5 : Φ, C0
◦ Trace anomalies match (protected from weak→strong coupling)
◦ BH entropy/holographic entanglement entropy (to be discussed more alter)
◦ “chiral” primaries of supergroup– irrep that has null states, Q|ψ〉 = 0 for some Q, ψ, with S|ψ〉 = 0

and {Q, S}|ψ〉 = 0. ∆ is determined by spin (M) and R-charge (R), hence the charge Q is protected
in going to strong coupling.

In fact, all type IIB supermultiplets (KKK reduced to AdS5 in regime of validity of SUGRA) is equivalent
to the single trace chiral irreps which are built tr(φ{IφJφK...}︸ ︷︷ ︸

n

) where {} indicates symmetric traceless. This

single trace expression corresponds to the nth spherical harmonic on S5. We then have the relations

[QA, φ] ∼ ψA,

{QA, ψB} ∼ FAB + [φI , φJ ]εAB

{QA, ψ∗B̄} ∼ DAĀφ

[QA, ABB̄] ∼ εABψ∗B̄.

We can have traces of 2 ≤ n ≤ N φs– note that traces of more than N commuting N × N matrices are
not independent (of traces of fewer than N matrices). This relation suggests that there is a shortest scale
on the S5, such that no new degrees of freedom emerge if we try to probe length scales smaller than the
Planck scale.

Now, IIB has no additional fields, so it seems that the non-chiral irreps have ∆ →large (∆2 ∼ 1/ls)
as λ →large. In n = 2 we have tr(φ{IφJ}) with 2 ≤ ∆ ≤ 4 which includes all conserved CFT currents.
∆ = 3 = d− 1 is the R-charge J, ∆ = 3 + 1/2 gives Jsuper, and ∆ = 4 = d gives Φ dual to the dilaton.

There are other versions of the duality which are useful.

◦ N M2’s: AdS4 × S(m)
6 ←→ d = 5,N = 8 ABJM model. U(N)×U(N) Chern-Simons gauge theory

L = F ∧ A + 2
3 A ∧ A ∧ A, also IR limit of d = 3,N = 8 SYM (g =relevant) (D2)

◦ N M5s: AdS2 × S4 ←→ d = 6,N = (2, 0) max dimensional superconformal theory. Does not come
from a Lagrangian but is known to exist from stringy arguments. Compactify on S1, flows to
d = 5,N = 4 SYM (g =irrelevant) (D4)

◦ Q1 D1 Q5: AdS3 × S3 × T4 (IIB) (K3)←→ nonlinear σ-model d = 2.
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Lecture 11.

Monday, May 13, 2019

Erratum: in writing tr(φIφ
J), we should have had ∆2 ∼ m2L2 ∼ L2/l2

s , where L was the AdS radius. See
also the relation ∆(∆− 4) = m2.

Black holes We have seen that the Hilbert spaces of the theories on either side of the duality are equal,

HAdS = HCFT. (11.1)

However, there is another way to phrase this correspondence, in terms of partition functions:

Z [Jbdy ]

AdS = Z [JCFT ]
CFT . (11.2)

Since the partition functions agree, this means that the n-point correlation functions will also agree, e.g.
δ

δJ1(x)
δ

δJ2(y)
. . . · lnZ = 〈O1(x)O2(y) . . .〉connected . (11.3)

We can do this for the partition function on either side of the duality (initially proposed by Ed Witten), and
we’ll find that the correlation functions do work out.

Moreover, there’s a simplification in the large N (and possibly strong coupling λ) limit– the bulk becomes
classical gravity. In this case, we can do a saddle point approximation and expand the metric as

gab = gclass
ab + hab, (11.4)

where gclass
ab solves the Einstein equations (possibly coupled to matter) and hab is some small quantum

correction. This is known as a semi-classical approximation.
In this case, our saddle point approximation says that we get

ZAdS = det(. . .)eiIgrav[gab (11.5)

in Lorentzian signature, where I is the action evaluated at the original classical metric and the determinant
factor depends on the quantum corrections. We might have e.g. det−1/2(D) for D a wave equation operator.
However, when we take the log, we get

logZAdS = Igrav + subleading in 1/N loop corrections. (11.6)

Sometimes we work in Euclidean signature and write −Igrav instead to avoid issues of convergence in our
saddle point approximation.

This gives us a new entry in the AdS/CFT dictionary. Suppose we have a Euclidean signature QFT. Then
the log of the partition function is equal to the gravitational action with a least-action “instanton” solution
to the equations of motion with a specified boundary metric γab.

There are some caveats to this, though. For one, the Euclidean action of GR is not bounded below (i.e. if
we go off-shell). In addition, we’re making a saddle point approximation, and so we should check that we
really can deform the contour.4

Let’s see this in action. In Euclidean signature, we have an action

IEuc.
(grav) = −

1
16πG

∫
M

√
g(R− 2Λ)dDx. (11.7)

Now we find a solution to the Einstein equation of motion in vacuum,

Rab −
1
2

gabR + gabΛ = 0. (11.8)

Tracing over, we have
D− 2

2
R = DΛ, (11.9)

which we can substitute back into the action to get

Igrav ∼
∫

dDx
√

g = Vol(M) = +∞ (11.10)

4“Morally, we should do this. Practically, no one ever does this before it’s too hard. You’re allowed to [assume the calculation
works], you just have to feel guilty for it.” –Aron Wall
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since our space is asymptotically AdS.
What’s gone wrong? We neglected to treat the boundary conditions carefully. What we should really do

is to impose a UV cutoff such that our integration is only over z > ε. When we vary the action to compute
the equations of motion, we usually discard boundary terms– we can’t do that here. Generically, varying R
gives us a term like δKijγ

ij, where we want γij 6= 0. More specifically, we should have included

(a) IGH = 1
8πG

∫
∂M
√

γKijγ
ij with Kij =

1
2 gij,n̂. This Gibbons-Hawking term tells us how to treat the

boundary term in terms of the metric γ on the boundary and the corresponding extrinsic curvature.
(b) Ict =

∫
∂M
√

γH[γij], local counterterms where H depends on up to d/2 derivatives of γij. This is
the usual sort of thing that happens in QFTs– we write down

lnZphys = lnZreg(ε)− local divergences, e.g. ε−n, ln ε. (11.11)

That is, we introduce a regulating parameter ε of a naively divergent partition function and subtract
off divergences to get the physical behavior. Interestingly, the coefficients of the log divergences
seem to represent universal quantities which do agree between the AdS and CFT sides.

Consider now the thermal partition function in terms of β = 1/T. That is,

Z [β] = trH(e−βE). (11.12)

This is analogous to evolving through β = i∆t imaginary time (e−i∆tE, and it gives us a geometry S1 × Sd−1.
Hence

ln Z = −βF = S− βE (11.13)

in terms of the free energy, and S is now the von Neumann entropy

S = −tr(ρ ln ρ) = (1− β∂β) lnZ (11.14)

with the energy E = −∂β lnZ .
We get what’s called a thermofield double state (TFD), which is

|TFD〉 = ∑
i

e−βEi/2|i〉L|Ēi〉R (11.15)

corresponding to a pure state in H⊗ H̄. If we restrict to one system, we get a thermal state.
There are two types of solution.
(a) If we pinch the Sd−1 to a point, we get two copies of the CFT at t = 0. This gives thermal AdS.
(b) We could instead pinch off the S1 to a point. This instead corresponds to a connected wormhole

geometry. More precisely, if we continue to Lorentz signature, we find the geometry of an eternal
black hole, AdS-Schwarzschild.

This second point is still somewhat mysterious. It seems that entanglement on the CFT side is equivalent to
a wormhole on the gravity side. In our semi-classical approximation, the entropy of thermal AdS is S = 0
(there may be subleading in 1/N corrections, which have the interpretation of thermal matter entropy). On
the other hand, for the BH solution, we find that the entropy of the CFT is

SCFT =
Area[H]

4Gh̄
= SBH. (11.16)

This is none other than the famous Bekenstein-Hawking formula for the black hole entropy. Again, there
may be subleading corrections from quantum fluctuations. This result tells us that the microstates being
counted by the Bekenstein-Hawking entropy are (in AdS/CFT) just the microstates of the dual CFT.

Lecture 12.

Tuesday, May 14, 2019

There was a question last time about what we meant by “pinching off” the geometry. The boundary of
our space is S1 × Sd−2. The idea is that we could either replace the Sd−1 with a ball Bd to get S1 × Bd, or we
could replace the S1 with a disc B2 to get a B2 × Sd−1. The former case gives two copies of thermal AdS,
while the second gives the eternal black hole.
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In the latter case, we get the AdS-Schwarzschild geometry. In AdS5, we have a metric

ds2 = − f dt +
dr2

f
+ r2dΩ2 (12.1)

where

f = 1 +
r2

L
− µ

r2 (12.2)

where the cosmological constant is related to the AdS radius by Λ = −6/L2. The proportionality constant
depends on how many dimensions we’re working in. Now the horizon radius is given by

rH =
L2

2
(

√
1 +

4µ

L2−) (12.3)

where the inverse (Hawking) temperature is then

β =
2πL2rH

2r2
H + L2

. (12.4)

If we plot T as a function of rH , we find that in the small rH regime (a small black hole), we get T ∼ 1/rH ,
which is just like the Schwarzchild black hole in asymptotically flat space. It has negative specific heat. On
the other hand, at large rH , we get T ∼ rH and in this limit of a large black hole, we get a positive specific
heat. Thus such a black hole is permitted in the canonical ensemble.

This tells us there is a minimum temperature corresponding to a maximized inverse temperature. For

β > βHP =
2πL

3
, (12.5)

we have IAdS < Ilarge BH. Conversely for β < βHP we instead have Ilarge BH < IAdS.
Equivalently, at low energies there exists a “confining” phase with S ∼ O(1) at low temperature (where

the particles form color singlets), whereas at high temperatures, we have S ∼ O(N2) which gives a (super)
gluon plasma. This is kind of a special confinement because we made space a sphere– since our theory was
conformal, a priori there’s no special length scale to confine to (unlike in QCD). If we put our theory on a
plane (R4 instead of S3 ×R) this is like taking the high-T limit. We find that

SBH =
Area
4Gh̄

=
3
4

Sfree ∼ VT3, (12.6)

which is another qualitative check of the duality since this gives the entropy of a free thermal gas. One
might worry about the 3/4 factor, but in fact perturbative calculations suggest that we might be able to
interpolate smoothly between the λ = 0 weak coupling limit (with the constant = 1) and the λ = large
strong coupling limit (with the factor 3/4).

In the microcanonical ensemble, small black holes in 5d are in fact permitted, even though their
temperature tends to decrease– this is allowed if we keep track of the thermal radiation as the black hole
evaporates. Below this temperature there are 10d black holes, stringy behavior, and at the lowest energy
scales some field theory limit. The CFT duals to the large black holes are better understood.

BH from collapse Let us suppose we send in a spherically symmetrical pulse of massless φ field (AdS-
Vaidya). As this pulse compresses, a horizon forms.

We can actually predict physics outside the horizon based on the data specified on the boundary, but in
general it’s harder to predict what happens inside the horizon. In the tin-can picture, we send in some
radiation and form a black hole, and this black hole then evaporates. At some point, the black hole reaches
the Planck scale and quantum gravity kicks in. We don’t really understand what happens here. It’s expected
that quantum gravitational effects will change the topology and allow the black hole to evaporate entirely.
It shouldn’t leave any remnant, since this would be hard to reconcile with the CFT description.

However, this leads to the “information paradox.” For semiclassical bulk physics, the Hawking radiation
should be thermal radiation, i.e. in a mixed state. One can study the Hawking radiation as related to some
modes inside the horizon by suggesting that near the horizon, an infalling observer should simply see the
vacuum. This allows us to treat Hawking radiation as a special case of the Unruh effect. But it seems that
the mixed state of the thermal radiation is not correlated with what fell in.
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On the other hand, on the CFT side, we observe thermalization. There’s some Hamiltonian describing
time evolution, so time evolution is in particular unitary– pure states remain pure under unitary operations,
though it may look effectively thermal. Information should be preserved.

Most of the community now believes that the CFT side (unitary evolution) is correct and that information
is not lost in black hole evaporation. Hence the question becomes: what goes wrong with the Hawking
calculation?

Work by Mathur and later AMPS (Polchinski et al) suggested that if we want the Hawking radiation
to also be pure, then the black hole interior is actually nonphysical for late time black holes. This is
the “firewall paradox.” Schematically, the argument suggests that the late-time radiation is strongly
entangled with both the early-time radiation and the infalling radiation beyond the horizon. This violates
the monogamy of entanglement, a consequence of strong subadditivity. We have

S(AB) + S(BC) ≥ S(A) + S(C) (12.7)

as bounds on the von Neumann entropies. Suppose A is the early time radiation, B the late time radiation,
and C the internal radation. Then S(AB) ∼ 0, S(BC) ∼ 0 since these states are entangled (and nearly pure
states), but S(A) ∼ ln 2, S(C) ∼ ln 2. This is very strange and there’s no clear resolution.

Lecture 13.

Thursday, May 16, 2019

Today we’ll introduce the idea of holographic entanglement entropy. We’ll begin with a discussion
of entanglement entropy in the context of field theory, and next lecture we’ll discuss its holographic
description with respect to the bulk theory.

If we have a Hilbert space which can be decomposed into a tensor product as

H = H1 ⊗H2, (13.1)

then for a pure state which lives in the bipartite Hilbert space |ψ〉12 ∈ H, we can write down reduced
density matrices by tracing over the degrees of freedom corresponding to the subsystems,

ρ1 = Tr2(|ψ〉〈ψ|) (13.2)

where tr(ρ) = 1 is normalized. The von Neumann entropy (perhaps familiar from Quantum Information
Theory) is a measure of how mixed a state is. It is given by

S(ρ) = − tr(ρ ln ρ), (13.3)

and it is zero for a pure state and ln dimH for a maximally mixed state. The von Neumann entropy has
some nice properties.

(a) It is positive, S(ρ) ≥ 0.
(b) Invariant under unitaries, S(UρU†) = S(ρ) and invariant under adding extra p = 0 states.
(c) Additive under tensor products, S(ρA ⊗ ρB) = S(ρA) + S(ρB)
(d) Triangle inequality: S(A) + S(B) ≥ S(AB) ≥ |S(A)− S(B)| (Araki-Lieb)
(e) Continuous for finite-dimensional H (lower semicontinous for infinite-dimension)
(f) Concavity, S(∑i λiρi) ≥ ∑i λiS(ρi) where ∑ λi = 1.
(g) For ρ = ⊕λiρi (i.e. a block diagonal density matrix), S(ρ) = 〈S(ρi)〉λ −∑i λi ln λi (the last term is

the Shannon entropy of {λi}).
(h) Strong subadditivity, S(AB) + S(BC) ≥ S(ABC) + S(B).

These many properties of the von Neumann entropy will lead to some nontrivial checks of the duality.

Entanglement entropy in field theory Now, the notion of entropy is a little different for quantum field
theories because our space does not factorize into clean Hilbert spaces as in quantum mechanics. Let us
take a d− 1-dimensional Cauchy surface Σ and further define a region R on Σ bounded by a surface E of
codimension 2. There should be some density matrix ρR describing the state of the fields in R.

Naively, we would say that the entanglement entropy of R is then

S(ρR) = − tr(ρR ln ρR). (13.4)

But there’s a difficulty. The value of this depends on
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(a) the QFT itself
(b) the region R
(c) the state ψ
(d) the short-distance cutoff ε, i.e. how we regulate the theory

Strictly speaking, one says that ρ is a state in a type III von Neumann algebra, but as is usual these
constructions are harder to work with. It doesn’t really make sense to take the trace over ρ ln ρ because
individual entries in the density matrix correspond to pure states which may have arbitrarily high energy
and large entanglement with the exterior region. We can then define ρ by the expectation values of operators
for all O ⊂ A in some algebra.

We should expect that for an entire system that is in a pure state, the entropy of our region R is equal to
the entropy of its complement,

S(R) = S(R̄), (13.5)

given that we apply the same cutoff on both sides of the boundary. For a spacetime foliated by some
Cauchy slices R1, R2, we can also say that S(R1) = S(R2) if D[R1] = D[R2] (their domains of dependence
are the same).

Divergences For a d = 2 CFT, we get an entropy of

S =
c
3

ln
( r

ε

)
+ finite, (13.6)

where the finite bit is scheme-dependent but the c/3 scaling of the log divergence is universal, with c the
central charge. For d > 2, we instead get an area law,

S = #
Area[E]

εd−2 + subleading (13.7)

where the constant in the first term depends on ε. In even dimension, we get a log divergence # ln(ε)
∫
[R]d/2

with R the curvature, and where the multiplicative factor is related to the central charge in the CFT. In odd
dimensions, we just get a finite contribution without the log divergence. That is, the subleading terms will
end with 1/ε + finite.

Geometric entropy The method we’ll discuss now is valid when ρ comes from a path integral with a U(1)
rotational symmetry. One may for instance discuss the Rindler wedge of Minkowski. In Minkowski, a
moving observer sees thermal radiation with boost energy due to the Unruh effect,

K =
∫ ∞

0
Tttxdxdydz. (13.8)

That is,

ρ =
e−2πK

Z
(13.9)

with Z = tr(e−2πK).
Since we have

S(β′) = (1− β∂β) ln Z|β=ρ′ , (13.10)

for β′ 6= 2π we get a conical singularity. Interestingly, if we take

ln Z = −Igrav =
1

16πG

∫
R
√

gddx, (13.11)

the Einstein-Hilbert action, one in fact recovers

S =
A

4Gh̄
, (13.12)

the Bekenstein-Hawking formula for the black hole entropy.
What if we do not have the U(1) symmetry? We use the “replica trick,” where we calculate a modified

partition function
Zn = tr(ρn), (13.13)
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d CFT bulk strong λ weak λ
2 D1-D5 AdS3 × S3 × T4 c c
3 ABTM AdS4 × S2 N3/2 (IR) N2 (UV)
4 N = 4 SYM AdS5 × S5 ∼ N2 ∼ N2

6 (2, 0) model AdS7 × S4 N3 (UV) N2 (IR)
Table 2. Caption

with n an integer. That is, we take n copies of ρ and glue them together along some surface, and attempt to
analytically continue to non-integer n. Then our entropy is given by

S = (1− n∂nZn)|n=1 (13.14)

= lim
n→1

1
n

ln tr(ρn)︸ ︷︷ ︸
Sn , Rényi entropy

. (13.15)

Lecture 14.

Friday, May 17, 2019

Today we’ll continue our discussion of entanglement entropy, specifically the holographic entanglement
entropy. The central result in this area is the Ryu-Takayanagi formula.

Last time, we said that by picking a Cauchy slice and some bounded region R with a boundary E = ∂R,
we wanted to define the von Neumann entropy of the region R such that S = − tr(ρR log ρR). The Ryu-
Takayanagi formula gives us a way to compute the leading-order piece of the entanglement entropy S. The
formula also applies to static geometries or t → −t Cauchy surfaces. Some of the scalings are given in
Table 2.

The prescription is actually very simple. Given E = ∂R on the boundary, we need only to construct the
surface γ in the bulk with boundary corresponding to E which minimizes the area. That is,

S = − tr(ρ log ρ) = min
γ

Area[γ]
4Gh̄

. (14.1)

It’s no coincidence this looks like the Bekenstein-Hawking entropy formula. There are some additional
constraints– the surface γ must be anchored to ∂R, and it must be homologous (can be smoothly deformed
through the bulk) to R.

For instance, in the eternal AdS-Schwarzschild black hole, the correct minimal area surface lies at the
throat of the wormhole. If we take R to be the CFT on one side, then all of space at an instant is Sd−1,
which is closed and has no boundary (∂R = {}). Hence the anchoring condition is trivial and the throat of
the wormhole satisfies the homology condition.

If we try to do the bulk area calculation naively, we get infinity, since there is a redshift factor 1/z2 in
our metric (ds2 = 1

z2 (ηij)dxidxj). This isn’t too surprising since we also had to impose a cutoff in directly
computing the entanglement entropy of the boundary CFT. Here, we will also introduce a cutoff and simply
integrate the area of the minimizing surface starting at some z = ε. In fact, if we are careful, we can use
theories with large amounts of supersymmetry to check e.g. in d = 4 and d = 2 that the log divergences
from the CFT calculation agree with the log divergences in the bulk calculation.

If there is a black hole in our space, as we tune the boundary region we will get a phase transition
depending on which side of the black hole our minimizing surface wraps around. But in fact we need not
have a black hole to see a phase transition. If we take a sphere and two caps A, B, then we can use RT to
compute the entropy S(AB). For small caps (small θ) we get

S(AB) = S(A) + S(B), (14.2)

where the mutual information (IA,B = SA + SB − SAB ≥ 0) is IA,B = O(1). But for large θ, we instead have
SAB < SA + SB, with IA,B = O(N2). By sketching this, we see that the entropy itself is continuous but its
derivative ∂

∂θ S is discontinuous.
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It’s a remarkable fact that although strong subadditivity is really hard to prove in quantum information
theory, there is a very nice proof from holography. Diagram to be added. We can prove other sorts of
quantum information inequalities, e.g. the monogamy of mutual information:

S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC). (14.3)

It is not satisfied by general ρABC in QM, but it does hold holographically (cf. Hayden-Headrick-Maloney).
There is also a covariant generalization of the RT formula, the Hubeny-Rangamani-Takayanagi (HRT)

prescription. This formula kicks in when the spacetime M is dynamical or if the boundary E is time-
dependent. Notice that in a metric with Lorentzian signature, our old notion of a minimal area surface
breaks down because we can generally increase the area of such a surface by introducing “wiggles” in the
time direction. Instead, we should try to extremize the area, like in Euler-Lagrange. Instead of seeking a
global minimum, the best we can do is to find a saddle point.5 Hence

S = min extγ
Area[γ]

4Gh̄
(14.4)

for surfaces γ that are still homologous to the region in the boundary theory.
There is another way about this, the “max-min” procedure. For each Cauchy slice Σ passing through

E, identify the minimal surface min(Area[γ], Σ). Then vary Σ to maximize, maxΣ minγ⊂σ
Area[γ]

4Gh̄ . This
is equivalent to HRT if Tabkakb ≥ 0 for ka null (i.e. the null energy condition) and the spacetime is
AdS-hyperbolic. This max-min proceedure is good for proofs (establishing properties of the HRT surface)
and bad for calculations (since we have to extremize over an infinite-dimensional space of Cauchy slices).

Lecture 15.

Monday, May 20, 2019

HKLL reconstruction formula Recall that our correspondence says that fields in the bulk can be written
as the limit of operators near the boundary,

φ→ lim
z→0

z−∆O. (15.1)

We would like to define φbulk(z, x) near the boundary but for some finite z. That is, we wish to reconstruct
the bulk from the boundary. To do this, we can write

φbulk(z, x) =
∫

ddx′ K(x′|z, x)O(x′) (15.2)

in terms of some Green’s function (kernel) K(x′|z, x). We wish to construct the φ̃ = z(d−1)/2φ which solves

[∂2
z −

m̃2

z2 +�(d)]φ̃ = 0. (15.3)

Notice this is a nonstandard Cauchy problem. We have a hyperbolic wave equation but instead of solving
based on initial data on a Cauchy (hyper)surface, we are given data on a timelike z = 0 surface.

We want φbulk to be uniquely determined by the z = 0 data, but while our equation looks hyperbolic in
the t-z plane, it looks elliptical in the t-x plane. To solve this, we can use the x-translation symmetry of the
problem. That is, we expand φ,O in plane waves in x so that

φp(z, t) =
∫

dx eip·xφ(z, t, x). (15.4)

The question reduces to a 1 + 1 Lorentzian problem, where it is now not so hard to switch the roles of
space and time. We can evolve in the z-direction at the cost of flipping the effective sign of m2, i.e. yielding
a tachyonic mass.

Note that it is not generally true that in a Lagrangian with a tachyon, our theory loses predictability (i.e.
information can travel faster than light). Instead, what happens is that instead of a nice harmonic oscillator

5Both mathematicians and physicists somewhat abuse the terminology here. Mathematicians will say that solutions of the E-L
equations are minimal surfaces, whereas physicists call these extremal surfaces. Technically, the surfaces need not be minima or
maxima (as is implied by extremal), but saddle points of the thing we’re varying.
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+φ2 potential, we get a −φ2 potential which makes our theory unstable. That is, small perturbations from
the vacuum state grow exponentially.

From our plane wave expansion, switching time and space allows us to write

φp(z, t) =
∫

dt′ Kp(t′|z, t)Op(t′) (15.5)

in terms of a kernel, as promised. However, note that Kp blows up at large values of p. That’s because the
� term grows bigger at large values of the spacelike momentum. Taking the inverse Fourier transform
would then in principle allow us to reconstruct the bulk from 15.2.

We can, if we wish, evolve the operator O back to a 1-bdy Cauchy slice,

O(t, x) = eiHt(O(0, x)e−iHt. (15.6)

That is, we can evolve the operator back to some preferred moment in time corresponding to a single
Cauchy slice on the boundary. Having behavior in the bulk determined by a codimension 1 surface is
standard field theory. Having behavior in the bulk determined by a codimension 2 surface is surprising.
That’s the holographic principle. Initial data on the boundary not only predicts time evolution on the
boundary but the entire interior of the bulk.

In the complete AdS (tin can) picture, in order to reconstruct the bulk field at some point, we need data
from a cylindrical chunk of AdS corresponding to how long it takes for null rays to reach the boundary.
We can do this, provided that we sum over spherical harmonics (it suffices to add over s-waves).

We could also look at the Rindler patch of AdS, in which case we could determine a bulk field just from
the intersection of its “light cone” with the boundary in one direction.

If we were feeling ambitious, we could include perturbative interactions in a 1/N expansion using
Witten diagrams. We could use Green’s functions in the spacelike directions to describe propagation from a
bulk point to the boundary, provided that we’re a little careful about gauge symmetries in the bulk. For
instance, diffeo symmetry in the bulk is allowed so long as they vanish on the boundary ∂Mbulk.

One way to do the gauge fixing is to use Fefferman-Graham coordinates, i.e. trace geodesics from bulk
points to near-boundary (z = ε) points. What we’d find if we did this was that conditions on the boundary
lead to nonlocal behavior, e.g. an electron on the boundary induces a nonlocal gravitational and electric
field in the bulk. This is related to the notion of Wilson lines.

Now what if our theory loses translation symmetry? We wish to reconstruct (part of) the bulk from a
general CFT region. To do this, take a slice R on the boundary and find its domain of dependence D[R].
Then determine the intersection of its causal future and past within the bulk, i.e

CW = I−(D[R]) ∩ I+(D[R]). (15.7)

This is known as the causal wedge. The property of bulk causality then says that using the local equations
of motion in the bulk (like HKLL), we can reconstruct at most the causal wedge CW . The future and past
boundaries of the causal wedge then define the future and past causal boundaries H+,H−, which as the
notation suggests are similar to black hole event horizons.

So we can reconstruct at most the causal wedge, but can we ever get the entire causal wedge? The
answer is contained in Holmgrem’s uniqueness theorem, which implies that if bulk “sources” are analytic,
we can indeed reconstruct all of CW . In practice it is often assumed that the causal wedge can always be
reconstructed in its entirety regardless of the analyticity of sources in the bulk. There are a few known
counterexamples where e.g. one could construct an artificial field obeying �φ = f (x, z)φ which decays
sufficiently quickly near the boundary, in which case a geometric optics approach shows that the causal
wedge cannot be completely reconstructed. But this is thought to be nonphysical in the sense that this
field behavior could not have come from an action principle. So whether the causal wedge can always be
reconstructed is an open question in bulk reconstruction.

However, if we have nonlocal operators, this leads us to a bigger version of the bulk, the entanglement
wedge. That is,

EW = D[ΣR→m(R)], (15.8)
where one considers the HRT surface. Bulk reconstruction leads us to an interesting paradox known as the
ADH paradox. Suppose we divide the boundary into three regions, A, B, C. Let φbulk lie in the very center.
Hence φbulk

◦ is in A[HAB]
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◦ is in A[HBC]
◦ is not in A[HB].

These first two implications suggests that in terms of HA ⊗HB ⊗HC, this operator must be I ⊗OB ⊗ I.
But we said that it couldn’t lie in HB alone.

Fortunately, there is a nice resolution, to do with the phenomenon of quantum error correction. One
version requires a three-qutrit system (a 27D Hilbert space). These three qutrits lead to one logical qutrit (a
3D Hilbert space), such that if we encode a state as one of the three computational basis states, if we then
lose one of the qutrits, we can still reconstruct the state of the logical qutrit state from the other two. That
is, we can reconstruct the full state if we restrict to the “code subspace.” This suggests that only a subspace
of states in the bulk will have a nice semi-classical limit like this “code subspace,” so whenever this is true,
there is no paradox.

Lecture 16.

Tuesday, May 21, 2019

Admin note: next year, this course will be turned into an examinable course.
Today we’ll conclude the course with a discussion of the path integral derivation of the Ryu-Takayanagi

formula, as originally shown by Lewkowycz and Maldacena.
Recall that the replica trick begins with taking the boundary and a region of interest with a density

matrix ρ. It’s not normalized; instead, its trace is the partition function. The replica trick tells us to take n
copies of the slice and stitch them together to get ρn, such that

S = (1− n∂n) ln Zn (16.1)

where Zn is the partition function for ρn. Hence by analogy to the Renyi entropy, we can say that

S = lim
n→1

Sn, Sn =
1

1− n
ln tr(ρn) (16.2)

= ∂n(ln Zn − n ln Z1)|n=1. (16.3)

Now we’d like to analytically extend to non-integer n. But what does it mean to perform the replica
trick a non-integer number of times? What we must do is find the smooth “instanton” interior bulk gas.
Notice that for the n-copied boundary, we have a Zn “replica symmetry” which cycles through the n copies
of the boundary. Let us further assume that this Zn symmetry is not spontaneously broken in the bulk,
Mn. We also take ∂R (the boundary of the CFT region of interest) to be fixed points (in particular, they are
points where there exists a conical singularity) and this implies that there is actually a codimension 2 locus
of fixed points in the bulk. We shall take

ln Zn = −Igrav[Mn] (16.4)

for a gravitational action in the bulk.
Here is the clever step that will let us extend to non-integer n. We construct the orbifold solution by

identifying points related by the Zn symmetry. That is, within the bulk, we look at a “fictitious manifold”
On defined by

On = Mn/Zn. (16.5)

The fixed points in the bulk (call them L) now have a conical singularity, such that β(k) = 2π/n, i.e. one
can go around the fixed points in the bulk by traveling an angle less than 2π.

Now we define a modified action on the orbifold,

Ĩ[On] =
Igrav[Mn]

n
. (16.6)

There’s a caveat, which is that there is no contribution from the singular tips (near the boundary) in Ĩ.
Hence On solves a (gravitational) action

I = Ĩ + Itip︸ ︷︷ ︸
Igrav[On ]

+Ibrane, (16.7)
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where this final term is

Ibrane = (1− n)
Area[L]

4G
, (16.8)

i.e. the area of the fixed point surface in the bulk, and with Ibrane = −Itip. That is, the membrane tends to
minimize its surface area in the bulk.

Finally, we shall take the limit as n → 1. Thus On as a manifold can be analytically continued in n to
non-integer n. Note that n = 1 =⇒ M1 = O1 is a solution to the equations of motion coming from the
action Igrav, the real physical action of our theory. We know that for solutions of the equations of motion,
the action is constant up to first-order variations, so that O1+ε has the same action Igrav as O1 up to order
ε2 corrections,

Igrav[O1+ε] = Igrav[O1] +O(ε2). (16.9)

In particular this says that as we vary n as a smooth parameter,

0 = ∂n Igrav = ∂n Ĩ + ∂n Itip, (16.10)

where this last term is −∂n Ibrane. Hence a bit of algebra shows

S =
Area[X]

4G
, (16.11)

i.e. the entanglement entropy is proportional to the area of the minimal (extremal) surface in the bulk.
In the n → 1 limit, L becomes a “test brane” so that we can neglect backreaction, and then L = X is an
extremal surface on M1. This is just the Ryu-Takayanagi formula.

Moreover, one can generalize further and compute the quantum corrections to the entanglement entropy.
This was done by Faulkner-Lewkowycz-Maldacena. RT gives the leading order term of SCFT in the 1/N
expansion, e.g. O(N2) in d = 4,N = 4 SYM. In fact, there are also O(1) ∼ h̄ loop corrections in the bulk.

There seems to be a problem: ln Z1 loop
bulk is inherently nonlocal. For instance, a QFT is sensitive to

topological features, e.g. a QFT on a cylinder picks up a Casimir from the nontrivial topology, whereas a
classical field theory (when lifted to the universal cover) cannot know about the topology. The solution is
then related to the Renyi entropies Sn[On] so that

S = ∂n(ln Zn[On]− n ln Z1[O1])|n=1 (16.12)

= ∂n(ln Zn[M1]− n ln Z1[M1])︸ ︷︷ ︸
Sbulk[X]

−∂n ln Z1[On]|n=1. (16.13)

That is, if this last term is non-vanishing, this tells us that our classical bulk solution is no longer a
stationary point of the action when we turn on quantum fields. Our quantum fields come with a stress
tensor 〈Tab〉 = δ ln Z

δgab 6= 0. Hence

S =
〈Area[X]〉

4Gh̄
+ Sbulk[X] +

∫
local counterterms, (16.14)

where we should not extremize with respect to the original geometry but the modified geometry after
quantum effects are taken into account. One may equivalently absorb the area law divergence into a shift
of Newton’s constant as 1/G.

This whole quantity is called the generalized entropy Sgen, and it is this entropy which is the focus of the
generalized second law, i.e. when quantum effects are accounted for, black holes can radiate and evaporate
away (reducing their area and therefore their entropy), but the total entropy is non-decreasing.

Finally, let us note that there is a result from JLMS which says that says there is a modular Hamiltonian
of a (mixed) state σ such that

K(σ) = − ln σ. (16.15)

This modular Hamiltonian has the property that for any variation (first-order),

δS(ρ) = δ
〈

K(σ)
〉

ρ
(16.16)

where ρ = σ + ∆ρ. This is sometimes known as the first law of entanglement entropy; it is like the Clausius
relation in thermodynamics.
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If we now vary the FLM relation for the generalized entropy, we fin that

K(σ)
CFT =

Area[X]

4Gh̄
+ K(σ)

bulk + local c.t. (16.17)

for any ρ with the same classical background geometry at O(1). Here, K(σ)
bulk corresponds to the state on the

entanglement wedge. Hence ρ, σ might be quite different as quantum states, but their modular Hamiltonian
will be the same. This holds not only on expectation values but as an operator equation.

If we recall the relative entropy from quantum information theory, there is

S(ρ||σ) = tr(ρ ln ρ)− tr(ρ ln σ) =
〈

K(σ)
〉

ρ
− S(ρ) ≥ 0 (16.18)

with equality iff ρ = σ. hence
S(ρ||σ)R

CFT = S(ρ||σ)EW[R]
bulk , (16.19)

which tells us that we can reconstruct the entanglement wedge from information in the CFT.
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