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Strong Cosmic Censorship and the End of Spacetime

In this essay we discuss the strong cosmic censorship conjecture, originally for-

mulated by Penrose. This conjecture states that physically reasonable spacetimes

are globally hyperbolic, so that given appropriate initial conditions, the Einstein

equations are completely deterministic. Several recent studies of the conjecture have

focused on the stability of the Cauchy horizon for black holes in asymptotically de

Sitter spacetimes. We review these studies and explicitly show that the cosmological

redshift effect due to the de Sitter background can prevent the blow-up and loss of

regularity of perturbations near the Cauchy horizon, leading to a violation of strong

cosmic censorship for the near-extremal Reissner-Nordström-de Sitter black hole.
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1. INTRODUCTION

The strong cosmic censorship conjecture [1] is a statement about the limitations of

classical general relativity. Stated simply, this conjecture asserts that physically reason-

able spacetimes are globally hyperbolic, i.e. they admit a Cauchy surface on which suitable

initial conditions can be specified so that a unique solution up to diffeomorphism consis-

tent with the Einstein equations (the maximal Cauchy development) can be constructed

for the entire spacetime manifold [2]. At heart, the conjecture is motivated by questions

of the predictive power of the Einstein equations, considered as an initial value problem.

Can astrophysical observers ever cross a Cauchy horizon? Does the deterministic nature

of the Einstein equations ever break down? Are Cauchy horizons stable to perturbations?

Strong cosmic censorship requires that the answer to all of these questions is “generically,

no.”

In this essay, we will first consider several different formulations of the strong cosmic

censorship conjecture and justify why the modern formulation as posed by Christdoulou

is most in the spirit of Penrose’s orignal conjecture. We then introduce the quasinormal

modes, a key tool in the study of perturbations to black hole spacetimes. We motivate

the crucial result that knowing the decay of quasinormal modes near the event horizon is

in fact sufficient to prove regularity of perturbations at the Cauchy horizon and thereby

establish a violation of strong cosmic censorship. Finally, we characterize the parameter

space of both the Reissner-Nordström-de Sitter (RNdS) and Kerr-de Sitter solutions in

terms of the quasinormal modes and show that while the near-extremal RNdS solutions

do violate all smooth formulations of cosmic censorship, no such violations are observed

in the much more astrophysically relevant Kerr-de Sitter solutions.

2. DEFINING STRONG COSMIC CENSORSHIP

The strong cosmic censorship conjecture is usually stated as a constraint on the causal

structure of spacetime with regards to Cauchy horizons. Recall that a Cauchy horizon

represents the boundary of the domain of dependence for some initial data set. If Cauchy

horizons are present in a spacetime, then by definition there are regions of spacetime which

cannot be predicted from the initial conditions– determinism in our classical theory breaks

down. If an observer could cross the Cauchy horizon, their future could not be determined

uniquely based on their past. Strong cosmic censorship asserts that generically, this does
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FIG. 1: A modified version of Figure 1 in [4]. A light clock A sends light pulses (dashed red

lines) to an observer B at regular intervals of proper time, as measured by A. It takes infinite

proper time for A to reach i+, and so A sends infinitely many pulses to B. However, since B

would cross the Cauchy horizon in finite proper time, B experiences an infinite proper time

compression effect relative to A and must “see” all of A’s pulses in finite proper time. This

produces a singular energy density before B can actually reach the Cauchy horizon.

not happen.

Theorem 1 (Strong cosmic censorship (informal)). Cauchy horizons are inherently un-

stable, and therefore cannot be crossed by astrophysical observers.

That is, Cauchy horizons can exist under very specific circumstances (e.g. in the

asymptotically flat Reissner-Nordström spacetime), but we need not take the new region

on the other side of the Cauchy horizon too seriously. If Cauchy horizons are unstable,

the region on the other side is in practice inaccessible and should not be considered as a

physically meaningful part of spacetime.

This attempt captures the general spirit of the conjecture, but it is too vague. Let us

try to be more precise. First, what do we mean by instability? The natural language to

discuss instability is the language of perturbation theory. If we write down a solution with

a Cauchy horizon and perturb the initial data (e.g. by breaking spherical symmetry),

then generically,1 the perturbed spacetime will not feature a Cauchy horizon. In the

1 Reall has a more formal statement of what we mean by “generically.” In his words, “if one introduces

some measure on the space of geodesically complete, asymptotically flat initial data, strong cosmic
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perturbed spacetime, the Cauchy horizon is precluded by some sort of singularity which

makes it impossible for an astrophysical observer to cross the Cauchy horizon.

For instance, while the Reissner-Nordström solution in asymptotically flat space has

a Cauchy horizon, it also suffers from a blue-shift instability making it sensitive to per-

turbation, as illustrated in the following example.

Example 2. Consider the asymptotically flat Reissner-Nordström solution, whose Pen-

rose diagram is shown in Fig. 1. Suppose we have an observer B in the interior region

of the black hole (region II) proceeding towards the Cauchy horizon at r = r−. Falling

freely, our observer can cross the Cauchy horizon in finite proper time according to their

own clock. However, suppose we also place a clock A far away from the black hole in

the asymptotically flat exterior region (region I), and this clock sends light pulses to our

observer at regular intervals as measured in its own frame.

Since this spacetime is asymptotically flat, the clock will send an infinite number of

pulses to our observer as it proceeds towards timelike infinity i+, taking infinite proper

time in its own frame to do so. However, by inspecting the Penrose diagram, we see that

the observer B must receive this infinite number of pulses from the light clock A in finite

proper time, specifically the proper time before B crosses the Cauchy horizon. In the

observer’s frame, the proper time between pulses gets shorter and shorter as the observer

approaches the horizon, a blueshift which results in an infinite energy density at the

Cauchy horizon itself and produces a spacetime singularity. The singularity (known as

the Poisson-Israel mass inflation singularity [5]) destroys the smoothness of the metric at

the Cauchy horizon, and therefore suggests that the Cauchy horizon in the asymptotically

flat RN spacetime is unstable.

Having considered instability, we will next refine the idea of an “observer.” In place

of observers, we might study the behavior of the spacetime metric or any fields (electro-

magnetic, scalar, etc.) that may live in our spacetime. In the context of strong cosmic

censorship, the instability of the Cauchy horizon means that the metric or any fields that

may live in our spacetime cannot be extended across the Cauchy horizon while satisfying

some differentiability condition (e.g. continuity or Cr smoothness). This is what we

censorship asserts that the maximal development is inextendible except for a set of initial data of

measure zero.” [3] In practice, this definition is difficult to work with, and we will instead study the

blowup of perturbations near the Cauchy horizon in order to argue that the Cauchy horizon cannot

be crossed for all “reasonable” spacetimes, i.e. ones subject to perturbation.
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mean when we say the singularity prevents an “observer” from crossing the Cauchy hori-

zon. Intuitively, if strong cosmic censorship holds, then our fields must become “badly

behaved” (i.e. not smooth) as they approach the Cauchy horizon.

These refinements lead us to the following formulation of the strong cosmic censorship

conjecture.

Theorem 3 (Strong cosmic censorship (Cr formulation)). For a spacetime with a Cauchy

horizon, consider an initial perturbation to the spacetime metric. Then generically, this

perturbation cannot be extended to the Cauchy horizon in the smoothness class Cr.

In this version, we have replaced terms like stability and observers with more careful

statements about perturbations and smoothness at the Cauchy horizon. For concrete-

ness, notice that the Cr formulation encompasses the C0 formulation of strong cosmic

censorship, which states that generically, the spacetime metric cannot be extended as a

continuous function across the Cauchy horizon. The statement of the C2 formulation is

analogous, replacing the word “continous” with “twice-differentiable.” Note the direction

of the implication here– a violation of the Cr formulation implies a violation of all Cr′

formulations for r′ < r (e.g. C1 false =⇒ C0 false). Conversely, if the Cr formulation is

true, then all smoother formulations are also true (e.g. C1 true =⇒ C2 true) but there

is no implication for the formulations of lower smoothness.

One might hope that the C0 formulation is true, since this would unambiguously an-

swer the question of strong cosmic censorship by establishing that the metric is generically

inextendible as a continuous function, and so spacetime simply comes to an end at the

Cauchy horizon. However, in asymptotically flat space, the C0 formulation has been

shown by Dafermos and collaborators to be false– the metric can in fact be extended

continuously across the Cauchy horizon even after perturbation [6, 7]. This result may

be a bit surprising, but it is not quite sufficient to prove that our aforementioned “ob-

servers” can survive the trip. The equations of motion for our fields are second-order,

so we might think that the metric should not just be continuous but C2 smooth at the

Cauchy horizon in order to solve the Einstein equations and pose a real threat to strong

cosmic censorship. In the asymptotically flat case, the C2 formulation does appear to be

true [8].

In fact, this turns out to be too strong a requirement, due to the possibility of weak

solutions to the Einstein equations. For a second-order equation of motion, we may

multiply the equation by a compactly supported test function and integrate the second-
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derivative terms by parts to get a related equation which is only first-order. Functions

which solve the new first-order equation for arbitrary test functions are then called “weak

solutions.” Weak solutions need not be as smooth as solutions to the original equations,

but can still represent important physical phenomena like shocks in fluids. As shown

by Klainerman et al. in [9], it is not the C1 or C2 smoothness of the metric but rather

the L2 norm of the curvature which determines the extendibility of the solution at the

Cauchy horizon. This leads us to the so-called Christodoulou formulation of strong cosmic

censorship [10].

Theorem 4 (Strong cosmic censorship (Christodoulou)). For a spacetime with a Cauchy

horizon, consider an initial perturbation to the spacetime metric. Then generically,

this perturbation cannot be extended to the Cauchy horizon with locally square-integrable

Christoffel symbols (i.e. the metric does not lie in the Sobolev space H1
loc).

This at last seems to be the correct formulation, in the sense that it presents a necessary

and sufficient condition to guarantee the breakdown of the Einstein equations at the

Cauchy horizon. If the Christodoulou formulation is true, then not even weak solutions

to the Einstein equations can be constructed across the Cauchy horizon. Weak solutions

seem to have the minimum regularity required to be considered as physically meaningful

solutions, so that establishing the non-existence of weak solutions would unambiguously

answer the question of strong cosmic censorship.

As a concluding note, there is a formulation of strong cosmic censorship due to Dafer-

mos and Shlapentokh-Rothman (DSR) [11], which states that if the initial perturbation is

allowed to lie in some minimum smoothness class (e.g. the initial data is already rough),

then generically near the Cauchy horizon the perturbation will be less regular than the

initial perturbation. That is, allowing rough initial data is enough to force the breakdown

of the Einstein equations and thereby uphold strong cosmic censorship. The DSR for-

mulation is interesting and may well be true, but it does not align as well with the spirit

of Penrose’s original conjecture. It is perhaps not so surprising that rough initial data

can become ill-behaved and cannot be extended smoothly through the Cauchy horizon;

it would be much more alarming if smooth initial data were extended smoothly through

the Cauchy horizon, since this would force us to take the new region of spacetime on the

other side seriously. In the rest of this essay, we shall focus on the validity of the Cr and

Christodoulou formulations.
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3. QUASINORMAL MODES

3.1. Definition of QNMs

In this section, we introduce a useful tool for the study of black hole perturbations.

These are the quasinormal modes (QNMs), a set of quasistationary solutions to a dissi-

pative wave equation describing perturbations which oscillate and decay with time.

For concreteness, let us consider a stationary, spherically symmetric (3 + 1D) black

hole spacetime in Schwarzschild-like coordinates of the form

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2dΩ2

2, (3.1)

where

t ∈ (−∞,+∞), r ∈ (r+,+∞), (3.2)

with r+ representing an event horizon (F (r+) = 0), and the angular coordinates have

their usual ranges θ ∈ [0, π], φ ∈ [0, 2π]. We will derive a set of solutions to the wave

equation in this spacetime, imposing a particular set of boundary conditions at the event

horizon and spatial infinity. We will also take these spacetimes to be asymptotically flat

or de Sitter (Λ ≥ 0). The boundary conditions for asymptotically AdS spacetimes are

somewhat more subtle due to the timelike boundary [12], and we will not discuss them

further.

Consider now a massless real scalar field Φ in this spacetime. It obeys the Klein-

Gordon equation in curved space:

1√
−g

∂µ(
√
−ggµν∂νΦ) = 0. (3.3)

Because the metric is stationary and spherically symmetric, we can decompose solutions

of Eqn. 3.3 into spherical harmonics and a simple time dependence of the form e−iωt for

some frequency ω ∈ C.

Definition 5. A mode solution is a solution to Eqn. 3.3 of the form

Φ =
∑
lm

ψωlm(r)

r
Ylm(θ, φ)e−iωt, (3.4)

where the Ylm are spherical harmonics.

Crucially, the frequency ω need not be real. In general, ω is complex, so that instead of

pure oscillating solutions, generically we will get solutions which oscillate and decay/grow
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with time. By substituting our mode solution into Klein-Gordon, one can show that the

radial part of Φ obeys the following Schrödinger-like equation:

d2ψ

dr2
∗

+ (ω2 − Vl)ψ = 0 (3.5)

where

Vl ≡ F (r)

(
l(l + 1)

r2
− F ′

r

)
(3.6)

defines an effective radial potential Vl in terms of the angular momentum number l and

dr∗ ≡
dr

F (r)
(3.7)

defines a tortoise coordinate r∗. To reduce notational clutter, we have dropped the

subscripts on ψωlm. Note that similar equations can be derived for perturbations of fields

with different spins, masses, and charges, e.g. some of the equivalent effective potentials

are given in Ref. [13] for pure de Sitter space. Similarly, coupled gravitational and

electromagnetic perturbations are described by the Kodama-Ishibashi formalism [14], as

is employed in the analysis of [15].

Definition 6. A quasinormal mode is a mode solution Φ obeying the boundary conditions

Φ ∼

e
−iω(t+r∗) for r∗ → −∞

e−iω(t−r∗) for r∗ → +∞.
(3.8)

These boundary conditions have a natural physical interpretation. For an asymptot-

ically flat metric, the effective potential Vl vanishes at the event horizon and at spatial

infinity. In an asymptotically de Sitter spacetime, Vl vanishes at the event horizon and at

the cosmological horizon. The solutions to Eqn. (3.5) in these limits look like free wave

solutions,

ψ ∼ e±iωr∗ as r∗ → ±∞. (3.9)

Physically, these conditions just say that near the event horizon, solutions must be purely

ingoing, and at the cosmological horizon, solutions must be purely outgoing.

The quasinormal modes form an infinite, discrete set of modes with some eigenfre-

quencies ωQNM. Unlike the normal modes of oscillation, they do not form a complete

set, so we cannot describe generic initial data as a sum of quasinormal modes. Instead,

we should think of quasinormal modes as transient, quasistationary states which can be

dynamically excited and then decay with time.
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3.2. QNMs and regularity at the Cauchy horizon

Two natural questions now arise. What can these quasinormal modes teach us about

the behavior of perturbations near the Cauchy horizon? And how do we go about comput-

ing the quasinormal mode eigenfrequencies? Resolving the second question is somewhat

complicated– only a few spacetimes admit exact quasinormal mode solutions, though

many others are amenable to numerical techniques. There are also a handful of useful

analytic approximations to the quasinormal mode frequencies in certain limiting cases.

We will revisit this topic in the next section after spending some time justifying why

quasinormal modes are critical to our analysis.

In fact, the first question has a remarkably simple answer. The decay of quasinormal

modes in the exterior region is related to the regularity of perturbations near the Cauchy

horizon by the following theorem [15].

Theorem 7. Let α be the spectral gap, i.e. the imaginary part of the quasinormal mode

frequency corresponding to the slowest-decaying quasinormal mode, and let κ− be the

surface gravity of the Cauchy horizon. Then a linearized perturbation can be extended to

the Cauchy horizon with regularity at least

H1/2+β, β ≡ α/κ−. (3.10)

This is a very useful result. Strictly, it must be proved separately for each kind of

perturbation we wish to study, e.g. for massless scalar perturbations, for gravitoelectro-

magnetic perturbations, etc. However, once established, this theorem tells us that it is

sufficient to study the decay of the quasinormal modes in order to establish regularity at

the Cauchy horizon. If we can compute the spectral gap α, we can place a lower bound

on the smoothness of perturbations at the Cauchy horizon. If all quasinormal modes in a

region of parameter space have β > 1/2, this constitutes a violation of the Christodoulou

formulation of strong cosmic censorship.

To prove Thm. 7, we will again consider scalar fields which admit a decomposition

into mode solutions, as in Eqn. 3.4. Let us momentarily set aside the quasinormal

mode boundary conditions and study these mode solutions in the interior region of the

Reissner-Nordström-de Sitter (RNdS) spacetime, region II. Our analysis here will follow

[15], which in turn rederives the results of Mellor and Moss in [16].

As in the exterior region I, we can define our tortoise coordinate r∗ by dr∗ = dr/F (r)
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FIG. 2: Modes enter region II from the event horizon and scatter in the interior. In the left

diagram, an in mode (red) atH+
R scatters and is partially transmitted as ψin,− (red) and partially

reflected as ψout,− (blue). On the right, the situation is flipped– an out mode (blue) at H+
L

scatters and is partially transmitted as ψout,− (blue) and partially reflected as ψin,− (red).

and write the Schrödinger-like equation governing the radial part of our mode solution:

d2ψ

dr2
∗

+ (ω2 − Vl)ψ = 0, (3.11)

with Vl again vanishing as r∗ → ±∞. In the black hole interior, region II, these limits now

correspond to approaching the event horizon H+ (r → r+, r∗ → −∞) and the Cauchy

horizon CH+ (r → r−, r∗ → +∞). Let us observe that near H+, we have two linearly

independent solutions:

ψin,+ ∼ e−iωr∗ , ψout,+ ∼ e+iωr∗ . (3.12)

Here, the + subscript indicates that the behavior of these solutions is specified near

the event horizon, r = r+, and the terms “in” and “out” refer to the fact that these modes

correspond to ingoing and outgoing solutions with respect to the ingoing and outgoing

Eddington-Finkelstein coordinates v, u,2 so that for these solutions,

Φin,+ ∼ e−iω(t+r∗) = e−iωv, Φout,+ ∼ e−iω(t−r∗) = e−iωu. (3.13)

Similarly, two linearly independent solutions can be constructed near the Cauchy horizon

CH+ at r = r−:

ψin,− ∼ e−iωr∗ , ψout,− ∼ e+iωr∗ . (3.14)

2 We emphasize that the use of “in” and “out” should always be understood with reference to the ingoing

and outgoing coordinates v, u, which are sensibly named in region I but are potentially more confusing

in region II, where there exists both an “out” mode ψout,+ entering region II and an “in” mode ψin,−

leaving region II.

11



In particular, note that the modes near the event horizon are related to the modes

near the Cauchy horizon. As shown in Fig. 2, for ψin,+ (the in mode at H+
R) some

fraction A(ω) is transmitted to CH+
L as ψin,− and some fraction B(ω) is reflected to CH+

R

as ψout,−. An equivalent statement holds for ψout,+, with some corresponding transmission

and reflection coefficients Ã, B̃.

By time reversal symmetry, the transmission and reflection coefficients for modes en-

tering region II from H+
R are the same as the transmission and reflection coefficients for

waves entering region II from CH+
L and CH+

R respectively and being scattered to H+
R, and

a similar statement holds for modes entering at H+
L . This statement can be summarized

by the following relations:

ψout,+ = A(ω)ψout,− + B(ω)ψin,− (3.15a)

ψin,+ = Ã(ω)ψin,− + B̃(ω)ψout,−, (3.15b)

which totally characterize the behavior of modes near the Cauchy horizon given initial

conditions near the event horizon.

Let us suppose the initial data onH+
L andH+

R are wavepackets with Fourier transforms

Z(ω), Z̃(ω) respectively. Thus

Φ|H+
L

=

∫
dω e−iωuZ(ω)Ylm(θ, φ) (3.16a)

Φ|H+
R

=

∫
dω e−iωvZ̃(ω)Ylm(θ, φ) (3.16b)

We can now match these boundary conditions to our linearly independent solutions

ψin,+, ψout,+ at the horizon, so that

ΦL =

∫
dω e−iωtψout,+(ω, r)Z(ω)Ylm(θ, φ), (3.17a)

ΦR =

∫
dω e−iωtψin,+(ω, r)Z̃(ω)Ylm(θ, φ) (3.17b)

and the solution in region II is then

Φ = ΦL + ΦR

=

∫
dω e−iωt

[
ψout,+(ω, r)Z(ω) + ψin,+(ω, r)Z̃(ω)

]
Ylm(θ, φ). (3.18)

Moreover, we can now decompose this solution in terms of in and out modes at the

Cauchy horizon using the relations of Eqns. 3.15a and 3.15b:

Φ = Φout + Φin, (3.19)
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where

Φout =

∫
dω e−iωt

[
A(ω)Z(ω) + B̃(ω)Z̃(ω)

]
ψout,−(ω, r)Ylm(θ, φ), (3.20a)

Φin =

∫
dω e−iωt

[
B(ω)Z(ω) + Ã(ω)Z̃(ω)

]
ψin,−(ω, r)Ylm(θ, φ). (3.20b)

Notice that Φin is smooth at the “left” part of the Cauchy horizon CH+
L , while Φout

is smooth at the “right” Cauchy horizon CH+
R. Our goal throughout this calculation

is to determine the regularity of modes near the Cauchy horizon, so let us study the

smoothness of the in modes Φin at CH+
R.

Near the Cauchy horizon, r∗ → +∞ and ψin,− → e−iωr∗ , so

Φin ≈
∫
dω e−iωv

[
B(ω)Z(ω) + Ã(ω)Z̃(ω)

]
Ylm(θ, φ). (3.21)

Taking a derivative with respect to the Kruskal-like coordinate V− ≡ −e−κ−v, we find

that

∂V−Φin ≈ (−V−)−1

∫
dω e−iωvF(ω)Ylm(θ, φ), (3.22)

where we have defined

F ≡ −iω
[
B(ω)Z(ω) + Ã(ω)Z̃(ω)

]
. (3.23)

The smoothness of Φin at CH+
R therefore depends on the integral in Eqn. 3.22, and the

value of this integral (which we can evaluate using contour integration) depends on the

analyticity of F(ω). Note that near CH+
R, the coordinate v goes to +∞ (so that CH+

R lies

at V− = 0). Because of the factor e−iωv in the integral, we will need to close the contour

in the lower half-plane, and our interest will therefore be in the poles of F with negative

imaginary components. As we will show, studying the pole structure of F in fact leads

us back to the quasinormal mode frequencies. This result is summarized in the following

lemma:

Lemma 3.24. The poles of F(ω) lie at positive integer multiples of iκ+, negative integer

multiples of iκ−, and the quasinormal mode frequencies ωQNM.

To study the analyticity of F(ω) and prove our lemma, we will rewrite B(ω) and Ã(ω)

in terms of Wronskians of our solutions. Suppose we have two functions f(r∗), g(r∗) which

solve an equation of the form
d2f

dr∗
− q(r∗)f = 0, (3.25)
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as is the case with our Eqn. 3.11. Then the Wronskian is defined to be

W [f, g] ≡ f ′(r∗)g(r∗)− g′(r∗)f(r∗). (3.26)

Notice that
d

dr∗
W [f, g] = f ′′g − g′′f = qfg − qfg = 0 (3.27)

since f and g each solve 3.25, so this implies that the Wronskian of two solutions is

constant in r∗. A bit of algebra reveals that

Ã(ω) =
W [ψin,+, ψout,−]

W [ψin,−, ψout,−]
= −W [ψin,+, ψout,−]

2iω
, (3.28)

where the second equality comes from evaluating the denominator at r∗ → +∞ (since

ψin,− and ψout,− reduce to e−iωr∗ and e+iωr∗ near the Cauchy horizon and we’ve just shown

that the Wronskian is constant in r∗). Similarly, the second coefficient is

B(ω) =
W [ψout,+, ψout,−]

W [ψin,−, ψout,−]
= −W [ψout,+, ψout,−]

2iω
. (3.29)

Hence

F =
1

2

[
W [ψout,+, ψout,−]Z(ω) +W [ψin,+, ψout,−]Z̃(ω)

]
. (3.30)

From here, we can cite results about the analyticity of ψin,± and ψout,± as originally

derived by Chandrasekhar and Hartle in [17]. As it turns out, ψin,+(ω, r) has simple poles

at negative integer multiples of iκ+, ψout,+ has simple poles at positive integer multiples

of iκ+, and ψin,− has simple poles at negative integer multiples of iκ−. This almost

completely describes the pole structure of F .

However, note that the initial data on H+
R (as described by the Fourier transform

Z̃(ω)) is not completely generic, since it is determined by the initial conditions in the

exterior region, region I. If we now suppose that initial data is specified on H− and H−c ,

the past event horizon and past cosmological horizon respectively, then we can perform

a similar scattering analysis in region I to deduce the form of Z̃.

More concretely, suppose the initial data on H− can be written as

Φ|H− =

∫
dω e−iωuX(ω)Ylm(θ, φ) (3.31)

and the initial data on H−c can similarly be written as

Φ|H−c =

∫
dω e−iωvX̃(ω)Ylm(θ, φ). (3.32)
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Then repeating the scattering analysis in region I with these boundary conditions and

writing the corresponding transmission and reflection coefficients in terms of Wronskians

(as is done in [15]) yields

Z̃ =

(
− 2iω

W [ψin,+, ψout,c]

)
X̃(ω) +

(
W [ψout,+, ψout,c]

W [ψin,+, ψout,c]

)
X(ω). (3.33)

In terms of Z,X, and X̃, which we may now take to be generic entire functions, we

therefore have

F =
1

2

[
W [ψout,+, ψout,−]Z(ω) +

W [ψin,+, ψout,−]

W [ψin,+, ψout,c]

(
−2iωX̃(ω) +W [ψout,+, ψout,c]X(ω)

)]
.

(3.34)

What poles does F have in the lower half-plane? From the first term, ψout,− contributes

poles at negative integer multiples of iκ−. The term with the ratios of Wronskians will

also have some poles, but some of them will cancel. We can see this cancellation by a toy

calculation: consider three functions, f(x), g(x), h(x) where f has a simple pole at some

x0 and g, h are both regular at x0. That is, near x0, f ∼ f0
x−x0 . Then

W [f, g]

W [f, h]
=
f ′g − fg′

f ′h− fh′
∼
−g(x0) f0

(x−x0)2
− f0

x−x0 g
′(x0)

−h(x0) f0
(x−x0)2

− f0
x−x0h

′(x0)
=
−g(x0)f0 − f0g

′(x0)(x− x0)

−h(x0)f0 − f0h′(x0)(x− x0)
,

(3.35)

which is now perfectly regular as x → x0. For our function F , the poles from ψin,+ will

cancel in this way, as will the poles from ψout,c. The poles from ψout,+ lie in the upper

half-plane and will not contribute to our contour integral. The only remaining possibility

for singular behavior is that W [ψin,+, ψout,c] vanishes at some values of ω.

However, notice that if W [ψin,+, ψout,c] = 0, this tells us that the mode solutions which

are ingoing at the event horizon and the solutions which are outgoing at the cosmological

horizon are in fact linearly dependent. But this is simply the quasinormal mode boundary

conditions of Eqn. 3.8, written in the language of Green’s functions.

Hence the poles of F in the lower half-plane lie at negative integer multiples of iκ− and

at the quasinormal mode frequencies ωQNM, as illustrated in Fig. 3. We can then deform

the contour of integration to place a bound on the integral
∫
dω e−iωvF(ω)Ylm(θ, φ). In

particular, we can shift the contour down off the real axis until just above the slowest-

decaying quasinormal mode, integrating over ω with Im(ω) = −α + ε. It is possible

that in doing so, we will cross a (finite) number of poles at multiples of −iκ− on the

imaginary axis, but these poles contribute an overall v dependence of e−nκ−v = −(V−)n

to our integral, so that referring back to Eqn. 3.22, these poles contribute terms to ∂V−Φ

which go as (V−)n−1, which is smooth for all n ∈ N as V− → 0.
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FIG. 3: The contour (dashed blue curve) for the integral
∫
dω e−iωvF(ω)Ylm(θ, φ) in the complex

ω plane. Poles at −inκ−, n ∈ N are marked as black crosses on the imaginary axis, while QNM

frequencies are red crosses. The integration contour has been pushed down off the real axis to

just above the slowest-decaying QNM frequency, which has imaginary part −iα where α is the

spectral gap.

Along our new contour, the integral goes as∫ ∞
−∞

dωr e
−iv(ωr−iα)F(ω)Ylm(θ, φ) ∼ e−αv = (−V−)α/κ− (3.36)

and therefore

∂V−Φ ∼ (V−)β−1, (3.37)

where β = α/κ− as originally stated in Eqn. 3.10.

Let us discuss the importance of this calculation. Since the (right) Cauchy horizon

lies at V− = 0, we see that for β < 1, ∂V−Φ diverges as V− → 0, representing a blowup of

curvature. Such a configuration upholds the C1 formulation of strong cosmic censorship.

If β < 1/2 for all regions of parameter space, then ∂V−Φ will not be square-integrable and

thus the field cannot be extended even as a weak solution, in support of the Christodoulou

formulation of strong cosmic censorship. Conversely, if β = r, then from Eqn. 3.37, we

see that the first r derivatives of our field are smooth at the Cauchy horizon and the

field is therefore extendible in Cr, establishing a violation of the Cr formulation of strong

cosmic censorship.

Moreover, equivalent results can be derived to describe other fields– for example, Ref.

[15] performs the analysis for linear coupled gravitational and electromagnetic perturba-

tions, finding the same β > 1/2 condition for gravitoelectromagnetic quasinormal modes
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to be extendible as a weak solution at the Cauchy horizon, while Ref. [4] makes a similar

argument for linearized metric perturbations in Kerr-de Sitter. In [18], Hintz and Vasy

show that in general, solutions u to the wave equation �gu = 0 with smooth initial data

on RNdS and Kerr-de Sitter spacetimes of dimension ≥ 4 can be decomposed near the

Cauchy horizon as u = u0 + u′ for some constant u0 ∈ C and where u′ lies in the Sobolev

space H1/2+α/κ− , with α the spectral gap. This conclusion was further supported by the

nonlinear analysis of Costa et al. in [19].

Taken together, these results suggest that a firm understanding of quasinormal modes

will be key to establishing any violations of strong cosmic censorship in RNdS and Kerr-

de Sitter spacetimes. In the next section, we will rederive analytical results about the

quasinormal modes of these spacetimes and compare them to recent numerical work, ar-

guing that not only is the Christodoulou formulation of strong cosmic censorship violated

for the massless scalar field in RNdS, but in fact all Cr formulations are violated for the

gravitoelectromagnetic quasinormal modes of the near-extremal RNdS spacetime.

4. THREE FAMILIES

4.1. Redshift, blueshift

Having introduced the quasinormal modes, what can we say about them in different

regions of parameter space for our problem? In both the RNdS and Kerr-de Sitter

solutions, there are two competing influences on the behavior of quasinormal modes near

the event horizon. These are the redshift effect due to the positive cosmological constant

of the background spacetime and the blueshift effect due to the gravity of the black hole

itself. Depending on which of these effects wins out, perturbations will either grow or

decay near the event horizon, which in turn determines their regularity near the Cauchy

horizon.

Naturally, we would like to parametrize these two effects to understand their relative

impacts. It is convenient to write the redshift effect in terms of a parameter

y+ ≡ r+/rc, (4.1)

since the radius of the cosmological horizon rc is directly related to the size of the cos-

mological constant (e.g. in pure de Sitter this is just the de Sitter radius, r2
c = 3

Λ
). Large

values of Λ therefore have the effect of bringing rc in closer to the event horizon and
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increasing the redshift of perturbations as y+ → 1.

Conversely, the blueshift effect is governed by how close the black hole is to extremality,

in terms of Q/Qext for the RNdS solution and a/aext for the Kerr-dS solution. That is,

Qext and aext are the limiting values of Q and a where r+ = r− for the RNdS and Kerr-de

Sitter solutions, respectively. Recall that in the asymptotically flat Reissner-Nordström

solution, as Q → Qext = M , the inner and outer horizons coincide, r+ = r− = M , and

the surface gravity at the event horizon is

κ+ =
1

2
|F ′(r+)| = 1

2

∣∣∣∣2Mr2
+

− 2Q2

r3
+

∣∣∣∣→ 1

2

∣∣∣∣2MM2
− 2M2

M3

∣∣∣∣ = 0. (4.2)

A similar calculation shows that the surface gravity of the asymptotically flat extremal

Kerr solution also vanishes as a → aext = M . As the surface gravity of the black hole

gets weaker, we might expect the blueshift effect to also become weaker.

Importantly, these two parameters entirely characterize the problem. While both

the RNdS and Kerr-de Sitter spacetimes represent three-parameter families of solutions

(Λ,M , and either Q or a), we can always fix a mass scale (e.g. by choosing Λ or M) and

normalize the other parameters to this scale, leaving two free parameters.

To sum up, we expect near-extremal black holes to have relatively weaker blueshift

instabilities, while black holes in spacetimes with large cosmological constants Λ will have

stronger damping redshift effects. These two effects are in direct correspondence with

the two parameters describing the RNdS and Kerr-de Sitter families of solutions, i.e. the

cosmological constant and the charge or angular momentum, respectively.

The question of strong cosmic censorship therefore reduces to considering different

perturbations (e.g. of various spins, charges, and masses) to these black hole spacetimes

and studying their behavior near the Cauchy horizon throughout our two-dimensional

parameter space.

4.2. Photon sphere modes

The first family of quasinormal modes we will consider is the set of photon sphere

modes. These modes dominate (i.e. are the relevant, slowest-decaying modes) for much

of the parameter space where Λ is non-negligible and Q is still far from extremality. In

addition, the photon sphere modes are believed to be only weakly dependent on the spin

of the perturbation [20], and are therefore useful for generic quasinormal mode analyses.

In this subsection, we will show that the quasinormal frequencies of the photon sphere
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modes are precisely related to the Lyapunov exponents (a kind of stability parameter)

of unstable circular null geodesics around the RNdS black hole. Having proven this

result, we will analytically calculate these unstable circular null geodesics, determine

their corresponding Lyapunov exponents, and thereby derive an analytic approximation

for the quasinormal frequencies of the photon sphere modes.

Our first result about the photon sphere modes is summarized in the following theorem

[21].

Theorem 8. In the geometric optics limit, l→∞, the quasinormal mode frequencies of

a black hole spacetime are given by

ωWKB = lΩ0 − i(n+ 1/2)|λ|, (4.3)

where Ω0 is the coordinate velocity of an unstable null circular orbit about the black hole,

λ is the principal Lyapunov exponent of this orbit, and n and l are non-negative integers.

Notice that Im(ωWKB) is independent of l in this limit, so we can determine the slowest

decaying mode (i.e. the spectral gap) by taking the fundamental frequency with n = 0.

Physically, the geometric optics limit tells us to study solutions which oscillate rapidly

over a slowly changing background potential. Recall that quasinormal modes solve a

Schrödinger-like equation, Eqn. 3.5, reproduced here:

d2ψ

dr2
∗

+ (ω2 − Vl)ψ = 0 (4.4)

with a potential

Vl ≡ F (r)

(
l(l + 1)

r2
− F ′

r

)
(4.5)

In this limit, our Schrödinger equation, Eqn. 4.4, now becomes

d2ψ

dr2
∗

+ U(r)ψ = 0 where U ≡ ω2 − F (r)
l2

r2
. (4.6)

If we were to draw U as a function of r∗, we would expect something that asymptotes

to ω2 at r∗ → ±∞ (where F (r)→ 0) and dips in the middle. We previously wrote down

some free solutions ψ ∼ e±iωr∗ to Eqn. 4.4 in these asymptotic regions where U ≈ ω2,

and we’d now like to patch them together in the critical region where U is changing

rapidly, i.e. near a classical turning point. The WKB approximation (perhaps familiar

from undergraduate quantum mechanics) provides us a means of doing so.

Let r0 be the value of r such that dU
dr∗

∣∣∣
r=r0

= 0. The WKB approximation tells us that

if we expand U about this extremum to order r2
∗, we can write down exact solutions for
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ψ (in terms of parabolic cylinder functions) valid in this patching region and obeying the

QNM boundary conditions, provided that U obeys a quantization condition [12, 21]

U(r0)√
2 d2U

dr2∗

∣∣∣
r=r0

= i(n+ 1/2), n = 0, 1, 2, . . .

Since U is given by Eqn. 4.6 in terms of ω, F, and l, we can solve this for the quasinormal

mode frequencies ω to find

ωWKB = l

√
F0

r2
0

− i(n+ 1/2)√
2

√
r2

0

F0

d2

dr2
∗

[
F (r)

r2

]∣∣∣∣
r=r0

(4.7)

where F0 = F (r0).

In principle, this formula now gives us all the quasinormal mode frequencies in terms of

n, l, and black hole parameters like M and Q, at least in the large l limit. But this formula

as written isn’t very physically meaningful. In the next calculation, we will show that

the quasinormal mode frequencies in the geometric optics limit are simply related to the

physical parameters governing unstable null circular orbits in the black hole spacetime.

In most black hole spacetimes, there is an null circular orbit which we call the photon

sphere. Generally, it is unstable. Given a stationary, spherically symmetric metric, we

can use the usual Euler-Lagrange procedure to compute the corresponding conserved

quantities of the null orbits (E = F ṫ and J = r2θ̇, the energy and angular momentum)

and write down the equation of motion for the r coordinate,

ṙ2 − Vr = 0 with Vr ≡ E2 − F (r)
J2

r2
. (4.8)

For these to be circular orbits, we require that ṙ = 0 and r̈ = 0, so null circular orbits

satisfy

Vr(rs) = 0, V ′r (r)|r=rs = 0, (4.9)

where rs indicates the radius of the null circular orbit.

However, we now notice something interesting. Vr has the same form as the “potential”

function U we defined in Eqn. 4.6, the Schrödinger equation after taking the eikonal limit.

In particular, U and Vr will have an extremum at the same value of r. This is because

d
dr

= F d
dr∗ by definition, so away from zeroes of F ,

dU

dr
= F

dU

dr∗
= 0, F 6= 0 =⇒ dU

dr∗
= 0. (4.10)

Therefore the r0 which extremizes U is actually the radius of the photon sphere, i.e.

rs = r0.
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Moreover, if we set Vr(rs) = 0, we get an expression relating E and J ,

b ≡ J

E
=

√
r2
s

F0

, (4.11)

where we have defined the geodesic impact parameter b. If we now compute the coordinate

angular velocity of the orbit, we find that

Ω0 ≡
θ̇

ṫ
=
J

E

F0

r2
s

=

√
F0

r2
s

(4.12)

where we have simply substituted the definitions of E and J and used Eqn. 4.11. Since

rs = r0, we see that this is exactly exactly the coefficient of l in Eqn. 4.7, our expression

for the WKB quasinormal modes.

The other coefficient also has a physical interpretation. We can perform a stability

analysis of the null circular orbits by linearizing the geodesic equation ṙ2 − Vr = 0, i.e.

by substituting in a solution r(t) = r0 + δr(t) and solving for δr(t). We find that

(δr′(t)ṫ)2 −
[
Vr(r0) + V ′r (r0)δr(t) +

1

2
V ′′r (r0)δr(t)2

]
= 0, (4.13)

and since V (r0) = V ′(r0) = 0, we have

δr′(t) =

√
V ′′r (r0)

2ṫ2
δr(t). (4.14)

When V ′′r (r0) is positive, we see that perturbations about the unstable orbit grow expo-

nentially in t, as

δr(t) ∼ eλt, (4.15)

and writing in terms of a derivative with respect to the r∗ coordinate, we find that

λ =

√
V ′′r
2ṫ2

=
1√
2

√
r2

0

F0

d2

dr2
∗

[
F (r)

r2

]∣∣∣∣
r=r0

, (4.16)

where λ is called the (principal) Lyapunov exponent. This is the other coefficient in Eqn.

(4.7). In terms of Ω0 and λ, we therefore find that

ωWKB = lΩ0 − i(n+ 1/2)|λ|. (4.17)

This completes the proof of Thm. 8.

We remark that photon sphere modes also exist for axisymmetric spacetimes like Kerr

and Kerr-de Sitter, as studied in [4]. There, the relevant photon orbits are equatorial

orbits, since those orbits will maximize the angular momentum number l.
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With this result in hand, let us calculate the photon sphere modes of the RNdS

spacetime. For RNdS, we have

F (r) = 1− 2M

r
+
Q2

r2
− r2

L2
(4.18)

which gives an effective radial potential

Vr = E2 − F (r)
J2

r2
=
J2

b2

[
1− b2

r2
F (r)

]
. (4.19)

We then impose the null circular orbit conditions Vr(rs) = V ′r (rs) = 0, which can readily

be rewritten as conditions on rs and bs:

bs =

√
r2
s

F (rs)
, 2F (rs)− rsF ′(r)|r=rs = 0 (4.20)

and substituting the explicit form of F (r) yields the photon sphere radius and the corre-

sponding impact parameter,

rs =
3M +

√
9M2 − 8Q2

2
, bs =

Lr2
s√

L2(r2
s − 2Mrs +Q2)− r4

s

. (4.21)

We get the coordinate angular velocity for free,

ΩRNdS =
1

bs
, (4.22)

and calculating the principal Lyapunov exponent then gives

λRNdS =

√
V ′′r
2ṫ2

∣∣∣∣∣
r=rs,b=bs

=

√
r2
s − 2Q2

bsrs
. (4.23)

This is all the information we need to write down the photon sphere modes for the

Reissner-Nordström-de Sitter black hole: they are

ωPS = lΩRNdS − i
(
n+

1

2

)
λRNdS (4.24)

with ΩRNdS and λRNdS given by Eqns. 4.22 and 4.23 respectively.

At this point, it is worth noting that an equivalent photon sphere analysis can be

performed for the Kerr-de Sitter spacetime, as was done in [4]. As it turns out, there are

two notable features of the quasinormal modes of Kerr-de Sitter as compared to Reissner-

Nordström-de Sitter. The first is that Kerr-de Sitter seems to have only one family of

quasinormal modes, in contrast with the three families of RNdS. The only family that

appears is the photon sphere modes, so that WKB methods remain reliable even near
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FIG. 4: The WKB approximation for β throughout the moduli space of Kerr-de Sitter, re-

produced from [4]. Here, α = a/rc is a normalized version of the angular momentum and

y+ = r+/rc characterizes the size of the black hole relative to rc. The dashed black line repre-

sents the extremal limit. For the massless scalar field, β does not exceed 1/2 in any non-extremal

Kerr-de Sitter spacetime.

extremality. This means there are no slowly decaying near-extremal modes in the Kerr-de

Sitter black hole, which leads to the second difference– as we will show, the near-extremal

RNdS black hole does violate strong cosmic censorship, but the near-extremal Kerr-de

Sitter black hole does not.

The WKB results for Kerr-de Sitter appear in Fig. 4, reproduced from Dias et al. in

[4]. The interpretation of this result is as follows– since no new family of quasinormal

modes emerges near extremality, all (scalar field) quasinormal modes of the Kerr-de

Sitter spacetime are found to decay slowly enough near the Cauchy horizon, so that the

Christodoulou formulation of strong cosmic censorship is respected. Ref. [4] also found

that the numerical results for Kerr-de Sitter support the photon sphere mode calculations,

with the error in β decreasing towards extremality.

Moreover, these results are also valid for metric perturbations to Kerr-de Sitter, since

the photon sphere modes are effectively independent of spin, which led Dias et al. to

conclude that not only do scalar field quasinormal modes obey strong cosmic censorship,

but more importantly, linearized gravitational perturbations of the non-extremal Kerr-de

Sitter spacetime also uphold strong cosmic censorship.

In contrast, for the Reissner-Nordström-de Sitter spacetime, β continues to increase
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beyond the critical value of 1/2 near extremality, as was found in [22], and in fact a new

family of near-extremal modes eventually takes over as the slowest-decaying quasinormal

modes. It is these near-extremal modes which ultimately determine the severity of the

violation of strong cosmic censorship in the RNdS black hole.

4.3. de Sitter modes

For completeness, we mention the existence of a family of quasinormal modes which

dominates in the limit of a small black hole (y+ = r+/rc � 1). These modes are

deformations of the quasinormal modes of pure de Sitter space. Numerically, they do not

seem to be of much importance to the Kerr-de Sitter spacetime, which is well-described

by the photon sphere modes alone. For the massless scalar field, these de Sitter modes

were computed explicitly to be [13, 22]

ωn=0,dS = −ilκdS
c (4.25a)

ωn6=0,dS = −iκdS
c (n+ l + 1), (4.25b)

where κdS
c is the surface gravity of the cosmological horizon in pure de Sitter space and

the n = 0, l = 1 mode dominates.

We shall see these again in our discussion of numerics, but they do not otherwise

hold too much interest for our problem. However, it is worth noting that Cardoso et al.

numerically demonstrated the existence of both photon sphere and de Sitter modes of

the RNdS spacetime for which β > 1/2 in a region of parameter space somewhat near

extremality but before the near-extremal modes take over [22]. Thus even small black

holes close enough to extremality may violate the Christodoulou formulation of strong

cosmic censorship.

4.4. Near-extremal modes

Of the three families of quasinormal modes, the near-extremal modes are perhaps

the most critical. Near extremality, the blueshift instability is weakest, and it is in this

regime that we expect to observe the most severe violations of strong cosmic censorship.

To study these modes analytically, we consider the near-horizon geometry in the near-

extremal limit as r− → r+.

Our main result in this limit is the following theorem [23].
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Theorem 9. The quasinormal mode frequencies of the near-extremal Reissner-

Nordström-de Sitter black hole for massless scalar field perturbations are given by

ωNE = −iκ+(n+ l + 1), (4.26)

where κ+ is the surface gravity of the event horizon and n, l are non-negative integers.

Following [23], let us first consider the behavior of the massless scalar field in the near-

horizon region of the asymptotically flat, near-extremal Reissner-Nordström background,

i.e. where Λ = 0 and we expand in the dimensionless parameters r0 and ρ defined by

M = Q(1 + r0), r = Q(1 + ρ).

The limits r0 → 0 and ρ → 0 correspond to the near-extremal and near-horizon limits,

respectively. Our aim will be to zoom in on the near-horizon region and analytically

solve the wave equation in this region, deriving constraints on the quasinormal mode

frequencies in the process.

The asymptotically flat Reissner-Nordström solution takes the form

ds2 = −F (r)dt2 +
1

F (r)
dr2 + r2dΩ2, (4.27)

with F (r) = 1− 2M
r

+ Q2

r2
. If we expand F (r) to leading order in r0 and ρ, we find that

F (r) = ρ2 − 2r0

= ρ2 − 2(M −Q)/Q. (4.28)

If we now define ρ̃ ≡ Qρ and ρ0 ≡
√

2Q(M −Q), we can then compactly rewrite the

Reissner-Nordström metric in the near-extremal, near-horizon limit as

ds2 = − ρ̃
2 − ρ2

0

Q2
dt2 +

Q2

ρ̃2 − ρ2
0

dρ̃2 +Q2dΩ2. (4.29)

Using this form of the metric, we can write the radial QNM equation, Eqn. 3.5, in

terms of the near-horizon coordinate ρ̃ so that our quasinormal modes solve

d2ψ

dρ2
∗

+ (ω2 − Vl)ψ = 0, (4.30)

with the potential

Vl ≡
l(l + 1)(ρ̃2 − ρ2

0)

Q4
(4.31)
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and the tortoise coordinate ρ∗ defined by

dρ∗ =
dρ̃(

ρ̃2−ρ20
Q2

) =⇒ ρ∗ =
1

2κ+

ln

(
ρ̃− ρ0

ρ̃+ ρ0

)
, (4.32)

where κ+ = ρ0/Q
2 is the surface gravity near the event horizon. By a change of variables,

Eqn. 4.30 can be written as [23]

x(1− x)
d2

dx2
ψ +

(
1− 3

2
x

)
d

dx
ψ +

(
ω2

4κ2
+x
− l(l + 1)

4(1− x)

)
ψ = 0 (4.33)

in terms of x ≡ 1
cosh2(κ+ρ∗)

. The solution to this equation can be written in terms of a

standard hypergeometric function,

ψ = x−iω/2κ+(1− x)l/22F1[a, b, c;x] (4.34)

where

a = − iω

2κ+

− l

2
+

1

2
, b = − iω

2κ+

− l

2
, c = 1− iω

κ+

. (4.35)

To compute the QNM frequencies, we must now impose the QNM boundary conditions.

Here, we take Dirichlet boundary conditions and require that ψ is not just outgoing but

in fact vanishes as ρ̃ → ∞, which corresponds to the limits ρ∗ → 0, x → 1. Physically,

these boundary conditions are motivated by the idea that the near-extremal modes are

highly localized to near the event horizon, and should therefore vanish at spatial infinity.

In this limit, note that 2F1 takes on a simple form:

lim
x→1

2F1(a, b, c;x) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (4.36)

This vanishes whenever the arguments of the gamma functions in the denominator take

non-positive integer values, i.e.

c− a = −n or c− b = −n (4.37)

with n = 0, 1, 2, . . .. Using the definitions of a, b, c in 4.35, this condition yields the

near-extremal quasinormal mode spectra

ω = −iκ+(2n+ l + 1), ω = −iκ+(2n+ l + 2). (4.38)

Noting that 2n + 1 covers all positive odd integers starting from 1 and 2n + 2 includes

all positive even integers starting from 2, we can combine these expressions to arrive at

the final condition that

ωNE = −iκ+(n+ l + 1), (4.39)
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with n, l ∈ Z≥0 as originally stated in Thm. 9. While this result was derived for the

asymptotically flat Reissner-Nordström spacetime, it nevertheless seems to agree well

with numerics in the RNdS spacetime, as is demonstrated in [22]. This is because the

near-extremal modes are highly localized around the event horizon, and therefore do not

depend strongly on the full geometry in the far region.

In fact, this is not the end of the story. To find the slowest-decaying mode, let us set

n = 0 and l = 0 in Eqn. 4.39. If we take the extremal limit, κ+ → κ−, we see that β → 1

for the massless scalar field in the near-extremal RNdS spacetime. Thus the massless

scalar field violates the Christodoulou formulation of strong cosmic censorship (which

requires β < 1/2) but not the C1 formulation, thanks to the near-extremal modes.

Furthermore, this property of the near-extremal modes upholding the C1 formulation

turns out to be specific to the massless scalar field. Following on the numerical work

of Cardoso et al, Ref. [24] studied the behavior of the massive (charged) scalar field in

the near-extremal RNdS spacetime, exposing a much worse violation of strong cosmic

censorship. Setting the scalar charge to zero in their result for the near-extremal modes,

we have

ωNE = −iκ−

(
n+

1

2
+

√
1

4
+ η̂

)
, (4.40)

where η̂ is real and positive and given in terms of l and y+ as

η̂ ≡ Ξ
[
y2

+µ̃
2 + l(l + 1)

]
(4.41a)

Ξ =
1 + 2y+ + 3y2

+

(1− y+)(1 + 3y+)
, (4.41b)

and µ̃ = µrc is the scalar mass in units of rc.

In the µ̃ = 0 case, this formula just reproduces our previous result– the slowest-

decaying mode has l = 0 =⇒ η̂ = 0, so that ωNE → −iκ−. But for a nonzero mass,

we notice that even for the slowest-decaying n = 0, l = 0 modes, as y+ → 1 (the limit in

which the event horizon and cosmological horizon coincide), Ξ diverges (as can be read

off from Eqn. 4.41b) and thus η̂ grows arbitrarily large. In particular, this means that β

can take on values exceeding 1, so it is not in general true that the near-extremal modes

uphold the C1 formulation of strong cosmic censorship.

The analogous calculation for the near-extremal modes for the gravitoelectromagnetic

perturbation reveals similar behavior to the massive scalar case. As shown in [15], the

gravitoelectromagnetic quasinormal modes in the near-extremal limit have a modified
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spectrum,

ωNE = −iκ−

(
n+

1

2
+

√
1

4
+ η̂−

)
, (4.42)

where now η̂− is given by

η̂− = 1 + Ξl(l + 1)−
√

[1 + Ξl(l + 1)]2 − Ξ2(l + 2)(l + 1)l(l − 1), (4.43)

with Ξ defined in Eqn. 4.41b and n = 0, l = 2 as the slowest-decaying mode. To

understand this formula, let us consider a small black hole, where rc is large compared

to r+ and hence y+ → 0. In this limit, Ξ→ 1 so that η̂− → 2 and then

β = −Im(ωNE)

κ−
→

(
1

2
+

√
1

4
+ 2

)
= 2. (4.44)

This is a striking result. Since Ξ is an increasing function of y+, it follows that even

for small RNdS black holes close to extremality, β > 2, which violates not only the

Christodoulou formulation but the C2 formulation of strong cosmic censorship. Con-

versely, if we take the limit of y+ → 1, then just as we saw in the massive scalar case,

Ξ blows up, which means β can reach arbitrarily large values. Thus by Thm. 7, linear

gravitoelectromagnetic perturbations can be extended as smoothly as we like across the

Cauchy horizon, provided that we take a sufficiently large black hole near extremality.

We conclude that the Christodoulou formulation and all Cr (“smooth”) formulations of

strong cosmic censorship are violated by the Reissner-Nordström-de Sitter family of black

holes.

These results are numerically confirmed and summarized in Fig. 5. In this figure, all

three families of gravitoelectromagnetic quasinormal modes are shown. We see that the

Christodoulou formulation is violated for significant regions of moduli space, and in the

upper right (corresponding to large, near-extremal black holes where y+ and Q/Qext are

both close to 1), values of β are calculated which are well above 2 (i.e. the cutoff for

the C2 formulation, which was previously shown to be true in asymptotically flat space).

Based on our analytic calculations, we expect this trend to hold for larger black holes

near extremality.

5. CONCLUSIONS

In this work, we have discussed a number of different formulations of Penrose’s

strong cosmic censorship conjecture. We have presented an argument in support of the
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FIG. 5: An illustration of the values of β for the three families of quasinormal modes cor-

responding to gravitoelectromagnetic perturbations to the RNdS black hole, reproduced from

[15]. Region A is the de Sitter modes (at low values of y+ = r+/rc), region B is the photon

sphere modes (for intermediate and large values of y+ with Q still far from extremality), and

region C is the near-extremal modes (for Q near extremality, as the name indicates). The red

dashed line indicates the region of moduli space above which the Christodoulou formulation of

strong cosmic censorship is violated, i.e. β > 1/2.

Christodoulou formulation of strong cosmic censorship as the most physically relevant for-

mulation when it comes to the breakdown of the field equations at the Cauchy horizon,

and rederived a result from [15, 16] establishing that the quasinormal mode frequencies

and in particular the spectral gap are critical to the decay of linear perturbations near

the Cauchy horizon.

Having shown that a knowledge of the slowest-decaying quasinormal mode frequencies

is sufficient to establish a violation of the Christodoulou formulation of strong cosmic

censorship, we then considered the specific cases of the Reissner-Nordström-de Sitter

and Kerr-de Sitter spacetimes and calculated the QNM frequencies analytically for the

massless scalar field, citing analogous results for other perturbations where appropriate.

Our key results are drawn from [22], who showed that the massless scalar field in the

near-extremal Reissner-Nordström-de Sitter spacetime violates the Christodoulou formu-

lation but not the C1 formulation of strong cosmic censorship; from [4], who showed that
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no equivalent violations of strong cosmic censorship are observed for the Kerr-de Sitter

spacetime for the scalar field and the (linear) metric perturbation itself; and from [15],

who showed that gravitoelectromagnetic perturbations in the near-extremal Reissner-

Nordström-de Sitter spacetime violate all smooth formulations of strong cosmic censor-

ship.
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